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1. INTRODUCTION
1.1 Literature on Point Processes

Point processes are models of random numbers of events in time intervals
or numbers of points in regions. Here are some typical families of examples.

Times at which an event occurs: Times of births, police emergencies,

failures of a machine, insurance claims, or earthquakes.

Random flows or streams of items: Times at which items enter or leave a

certain place such as telephone calls arriving to a switching center, data
packets entering a computer, parts leaving a manufacturing work station. and
cash flows in a company.

Random locations of points in an Fuclidean space: Galaxies in space. errors

in a computer code, animals in a forest, aircraft over a city.

Times of special events in a stochastic process: The instants when a

Gaussian process crosses a certain level or when a pure-jump Markov process
makes a certain type of transition.

Random locations of elements in an abstract set: One can talk of a point

process in which the points are functions in a space of functions, lines in a
set of lines on the plane, graphs in a set of graphs, etc.

Although the theory of point processes has been developed only recently,
its origins go back several centuries. Here are its major roots.

Poisson Phenomena. Poisson (1837) showed that the Poisson distribution is

the limit of a binomial distribution of rare events. This led to numerous
applications of the Poisson distribution in the nineteenth century and the
eventual development of the Poisson process, which is the paramount point
process. Two notable Poisson applications, before the modern era of

probability. were Erlang’s (1909) model of telephone calls to a trunk line
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and Bateman's (1910) model of a-particles emitted from a radioactive
subs tance.

Life-Tables. Systems Reliability and Renewal Phenomena. The numerous studies

of mortality based on life-tables from Graunt (1662) to Lotka (1939). and
related studies in this century, such as Weibull's (1939) study of system

lifetimes, were the precursors of renewnl processes.

Queueing in Telecommunications. Palm's (1943) pioneering work on queueing in
telecommunications and Khinchine's (1960) mathematical foundations of
queueing processes showed the significance of modeling the flow of customers
into a service station as a point process. This highlighted the need to
develop point processes of event occurrences other than Poisson or renewal
processes.

Statistical Mechanics. Gibbs: (1902) fundamental work on statistical

mechanics was a major catalyst for developing point processes in spaces other
than the real line and with interactions among the points.

Most of the theory of point processes has been developed in the last 30
years. The standard families of point processes are: (1) Poisson, compound
Poisson and Cox processes. (2) Infinitely divisible and independent
increment point processes. (3) Renewal processes and processes defined by
interval properties. (4) Stationary point processes. (5) Marked point
processes, which are associated with each of the other families. (6) Point
processes related to Martingale theory and stochastic calculus.

In this chapter, 1 shall describe the structure of most of these
processes and discuss some of their basic properties. The coverage does not
include several important topics requiring lengthy mathematical development

(e.z. martingale theory of point processes, general Palm probabilities, and

RIS SR PR
t) ,’*"-;‘

o -
.\I'

5

‘.
w g o O

533 [ =2y

e &
A




ergodic and spectral analysis of stationary processes). The emphasis will be

on presenting tools for modeling stochastic systems rather than on

applications of the tools. Although the theory of point processes is 4
. intimately connected with the subject of measure and integration (a point '

process is a random counting measure), I shall focus on results that can be

understood without a deep knowledge of measure theory. On the other hand,

the presentation will be rigorous ana at the level of the applied probability
literature that one would encounter in studying point processes.

' The standard books and survey articles on point processes are as A
follows. Introductory works with a fairly broad coverage are Daley and

Vere-Jones (1972) and Cox and Isham (1980). One can obtain a gcod

introduction to point processes by reading these along with Cox and Lewis

o m_wmge

(1966). Grandell (1976,1977)..Snyder (1975), Jagers (1972). Karr (1986,

Chapters 1.2) and selected articles in Lewis (1972). The forthcoming book by

Daley and Vere-Jones (1988) gives a detailed introduction and more

comprehensive development of the theory. The most recent and rather complete

research monograph on the mathematical theory of point processes and random
. measures is Kallenberg (1983). q
1 In addition, there are a number of books on special topics. Feller d
(1971), ginlar (1975), Gut and Prabhu (1987) and standard introductory texts
' on stochastic processes provide a good coverage of renewal processes.
- Khintchine (1960), Cramer and Leadbetter (19G7), Franken, Konig, et al.
(1981), Rolski (1981). Baccelli and Brémaud (1986), and Neveu (1977) are

studies of stationary point processes and queueing (also see Bartfai and 3

- Be

Tomké (1981)). Matthes, Kerstan and Mecke (1978) discuss infinitely ¢
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divisible point processes. The martingale approach to point processes
appears in Brémaud (1981). Liptser and Shiryayev (1978), lkeda and Watanabe
(1981), and Elliott (1982). Also. Ripley (1981), Jacobsen (1982) and Karr
(1986) study statistical inference and prediction problems of point
processes.

Other subjects related to point processes are random sets (Kendall
(1974), Matheron (1975) and Ripley (1976)), systems of interacting particles
(Liggett (1985)). random fields (Kinderman and Snell (1980) and Rozanov
(1980)). percolation processes (Kesten (1982)), and extreme value theory
(Leadbetter, Lindgren and Rootzén (1983)).

To see what topics lie ahead. consult the table of contents. Most of
the results herein are proved and developed further in Cox and Isham (1980},
Daley and Vere-Jones (1988), Feller (1971), and Kallenberg (1983). The other
references 1 cite are for particular points. For a complete set of
references and a chronology of the development of point processes, see these

books and also Karr (1986).

1.2 Definition of a Point Process

The classical definition of a point process on R, = [0.») is as follows.
Suppose that TI'T2"" are random variables on a probability space
representing locations of points on R+. such as the successive times at which

an event occurs. Assume that O ¢ Tl ¢T and Tn - ®a.s5. (almost

9 < ...

surely). Then the number of points or event occurrences in the interval

[O0.t] is given by
@

Nt = 3 l(Tn < t).
n=1

where 1(A) is the indicator of A (it is one on A and zero elsewhere). The
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counting process (Nt: t 2 0}, or the sequence (Tn: n=1,2,...}, is called a
point process on R+.

This definition is adequate for many applications. However, a more
general definition is required for (i) modeling point processes with a
finite, random number of points (the process above has an infinite number),
(ii) defining point processes on general spaces, and (iii) characterizing the
probability law of a counting process directly without reference to its point
locations. The characterization in (iii) is needed for analyzing sums
(superpositions) and other operations on processes, studying the convergence
of processes, comparing processes via order relations. and even constructing
approximations.

We shall adopt the following definition of a point process. We let E
denote the space in which the.points lie. For our purposes, we assume that E

is an Euclidean space (e.g. R+. Rd.

these (e.g. R+ x C, Rd x C). The E could also be a more general topological

[a.b]. a countable set), or a product of

space, see Kallenberg (1983). We distinguish three kinds of subsets of E:
the class ¥ of all intervals or rectangles in E of the form (a.b] = {x€E:

a ¢ x { b coordimtewise}, the class & of Borel sets of E (those formed from
countable unions and intersections of sets in #)., and the class % of bounded
Borel sets (a set is bounded if it is contained in a finite interval). As
usual, all functions herein are assumed to be measurable (f: E - R is
measurable if {x: f(x) { a} € &} for each a € R).

Definition 1.1. A point process N on E is a collection of non-negative

integer-valued random variables N = {(N(A): A€§} on a probability space that
take values in {0.1,...,»} and satisfy the following conditions:

(i) N(¢)=0 and N(B) ¢ w a.s. for each B€A}.

(ii) N(U Bn) =3 N(Bn) a.s. for any disjoint BI'B2"" in .

n n

The random variable N(A) represents the number of points in the set A.
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A more formal but equivalent definition is as follows. A counting

measure on E is a mapping p from & to {0.1.... @} such 4hat u(¢) = O:
u{(B) < @, B € % and u(U Bn) =3 p(Bn) for disjoint BI'B2"" in 3. Let ¥
n n

denote the set of all such counting measures. Note that the defining
conditions (i). (ii) above for N simply say that almost every realization of
N is a counting measure on E (i.e. an element of ¥). This leads to the
following definition.

Definition 1.1. A point process on E is a measurable mapping N from a

probability space to ¥.

We shall also use non-integer valued random measures. A random measure

A on E is a collection A = {A(A): A€E)} of non-negative random variables
satisfying conditions (i) and (ii).

Suppose that N is a point process on E. Then there exist random
variables XI.X2.... with values in E and a random variable v with values in

{0.1,....2} such that

3]
N(A) = 2 6x (A). A€g,
n=1 n

where bx(B) = 1(x€B) is the Dirac measure with unit mass at x. The Xn's

represent the locations of the points and v = N(E) is the total number of

v
=1 6xn. We also let N(a,b]

points. We denote this representation by N = 3
denote N({a,b]).

Note that there are at most a finite number of Xn‘s in a bounded set,
and the subscripts on the Xn's may not be unique. Also, N may have several

points at one location. When N({x}) = O a.s. for each x€E, then we say N is

simple (a sufficient condition for this is in Lemma 1.7). If N is not

simple. then we can write
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N(A) = 3 Z6 (A)
n=1 X;]

where Xi.Xé.... are distinct point locations, Zn = N((XA}) is the number of
points at Xa and v' is the number of point locations.

When N is a point process on E=R+. it is standard to use Tn's instead of
Xn‘s and subscript them such that O ¢ TO < Tl ¢{...a.s. Such a process is
of ten used to model the occurrences of an event with Tn being the time of the
n~th occurrence. Because of the total ordering of R+. and hence of the Tn's.
the theory of N is equivalent to that of the increasing stochastic process

= N[O, t]. t 20,

(i.e. each N(B) can be expressed in terms of Nt's). Similarly. for N on E=R,

the standard representation is

LT S ¢T ST, COKT, €T, ¢

-2 -1 0"° 1= 2=
Y2
N(A) = 2 6T (A), A€EE,
n=-~n n
1
and the associated increasing process is
N = {N(O.t] t >0
t Ln(t.0] t < 0.

For E = Rd. there is no standard ordering of the Xn's. but the last
increasing process is still well defined (here LERd and (a.b]€ 7).

The moments of a point process N on E are as follows (the expectations
below may be +® except when ® - is encountered):
The mean measure (or intensity measure) of N is pu(A) = EN(A), ACE. These
measures also arise in expectations of integrals with respect to N (Remrk
1.5).

The k-th moment measure of N is

“k(Alxo .-xAk)

w

E[N(A,) == *N(A) L. A ... A in &

e o T T e e
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then, in comparison,

!
3
]
8
F ,
) The covariance measure of N is N
Cov(N(A). N(B)) = u2(AxB) - p(A)u(B)., A, Beg. .- B
-4
The k-th factorial moment measure of N is ﬁ
A
i () = EfNA) ()1, aeg. where n(%) = n(n-1)-++(n-k). and -
i k) k. (k) (k) g
, - o Ce . ;
' “(k)(Al x...xAr }) =E N(AI) N(Ar) . Al.....Ar disjoint in & :
} and kl +...+ kr = k. This uniquely defines u(k)(B) for each Beék. The ﬂ
. . -5 ',
i difference between “(k) and My is easy to see for k=2: s
| Mgy (AXB) = 1y(AXB) - u(AB). A.B € &. 3
) ]
i Also. if w_has a density f,: E +R_so that '
- 1
. uk(A) = IA fk(x1 ..... xk)dxl...dxk.
!
)
u

PR DR o

u(k)(A) :'[A. £ 0y mox Jdx Lodx

where A’ = ((xl.....xk) € A: Xpoennn X, are distinct}. The moment measures v
)
»
: yield infinitesimal probabilities in the usual manner: When Hy has the ~
! 4
| . -
density fk' then for distinct L SERRERE :
P(N(xl.xl+dx1] =1..... N(x WX +dxk] =1) = ( EERRE xk)dxl...dxk 5
o
'
I3
! 1.3 Distributions and Laplace Functiomals of Point Processes v,
The distribution or probability law of a point process N on E is >
“
uniquely determined by the joint distribution of N(Bl) ..... N(Bn). for each n N
“~
and disjoint Bl""‘Bn in ¥ (called the finite dimensional distributions of ;
N). The following is an elaboration on this. We use g to mean equal in N
distribution. f
D , v
Remarks 1.2. let N = 3 bx and N* = 3! 6x. be point processes on E (they :'
n=1 n n=1 n
may be defined on separate probability spaces). ‘
3
N
3
\‘. d_sfs,ﬁ’ R = .‘. ‘.':Jlﬂ'):.“.“'l ‘.,.--_:'.. STa e --_.\'_ -". .. ' ‘,, .‘!'.'\..\ i N g _‘-‘_\._\'_\_.\‘_\ \-_-‘ IO -v_ \'{
Sy m” tﬁf"“ﬁﬁ‘vmqﬁﬁfyﬁﬁfﬁﬁ'““ SO NN Pﬁﬁﬁﬁ“a‘”‘ N




(a) N d N' if and only if (N(Il)""'N(In)) d (N'(Il).....N'(In)) for each n
and disjoint,Il ..... In in ¥ . When E C Rd. this condition is equivalent (in
terms of increasing processes) to (Nt ""'Nt ) g (N;

Nt ). e, <...¢
1 n 1 n

1 = 2
t .
n

(b) When N and N' are simple, then N d N' if and only if P(N(B) = 0)

P(N'(B) = 0). B € %.
(c) If (D.Xl.X2....) g (u'.Xi.Xé....). then N d N'. The converse is true
when E = R+ or R and the Xn's are the ordered Tn's.

The distribution of a point process is also uniquely determined by its
Laplace functional as follows. We shall denote Lebesgue integrals as
fEf(x)u(dx). as opposed to IE f(x)du(x). and we sometimes omit the E.

Readers unfamiliar with these integrals can interpret them as Riemann
integrals [f(x)¢(x)dx, where ¢ is the density of p (symbolically up(dx) =
¢(x)dx). These integrals also maoke sense when f or p are random. An example

is

6x .

D
J £(x)N(dx) = 2 f(X). when N =
E n 1 n

n=1 n

W Mc

Definition 1.3. The Laplace functional of a point process N on E is

L un 2B e B g

Ly(f) = E{exp[—é f(x)N(dx)]}. where f: E > R_.

This is analogous to a laplace transform E(e_tz) of a non-negative

random variable 7. We first note that the joint Laplace transform of

N(Al) ..... N(An). for Al ..... An in §, is contained in LN. Indeed, consider
n
the simple function f(x) = 2 tkl(xeA }. Then
k=1 k
n
(1.1) E {exp[— kfl tkN(Ak)]} = LN(f).

Thus, LN uniquely determines the joint distribution of N(Al).....N(An), and




SO LN also uniquely determines the distribution of N. This, and a
characterization pf N via integrals are the subject of 4the next resulc. We
let Ck denote the set of functions f:E = R+ that are continuous and such that
{x: f(x)>0)} is a bounded set.

Theorem 1.4. Suppose N and N' are point processes on E. The following

statements are equivalent: (i) N d N, (ii) LN(I) = LN.(f). f € Ck.

d
(iii) [ f(x)N(dx) = [ f(x)N'(dx). f € G-
Remark 1.5. Integrals of the form IA f(x)N(dx), where A € & and f: E = R,
are important in applications as well as in theoretical statements such as

Theorem 1.4. A frequently used formula is
E[f, fO)N(dx)] = [, f(x)u(dx).
where p is the mean measure of N, provided the integral exists. This is
proved by verifying it for simple functions and then limits of simple
functions (as in the proof of Proposition 1.9).
The uses of Laplace functionals are similar to those of Laplace
transforms. For example. moments of N(Al).....N(Ak) can be obtained from

derivatives of (1.1). As another example, suppose Nl""‘N are point

k

processes on E. Then their sum or superposition N=N +...+Nn is also a point

1
process (regardless of the dependency among the Nk's). Now. if Nl""'Nn are
independent, then the Laplace transform of N has the product form

n

n
(f) = E{fexp[- 2 f f(x)N (dx)]} = T L (f).
LN P k=1 * k k=1 Nk

which is sometimes convenient for obtaining the distribution of N.

1.4 Basic Examples: Poisson, Renewal and Stationary Processes
Point processes are commonly classified by their distributions (e.g. a

compound Poisson process) or by a certain characteristic (e.g. a stationary
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point process). They may also be classified by how they arise as a function
of another process (e.g. the times when customers exit a network of service
systems), by the mathematical techniques involved in their analysis, or by
their application context. We now introduce several basic processes.

Suppose N is a point process on E. We say that N has independent

increments if N(Bl)""'N(Bn) are independent for any disjoint Bl""'Bn in &

(we discuss these processes in & 3.3). We say that N is a stationary point

process on E C Rd (or has stationary increments) if. for each Bl""'Bn in 3,
(N(Bl+x). ..N(B +x)) (N(B ).. ..N(Bn)). x € E.

Here B + x = {y + x: y € B}. Stationary processes are the subject of § 5.
The most important point process is the Poisson process.

Definition 1.6. A point process N on E is a Poisson process with mean

measure A if N has independent increments and, for each B € %,

P(N(B) = n} = A(B)Ke A(B)/n1.  no0.1,
(This probability statement also holds for each B in the larger classs &,
with N(B) = O or @ a.s. when A(B) = O or @, respectively.) We call N a

stationary Poisson process with rate A when A(dx) = Adx for some A > O and E

C Rd (the general process is sometimes called non-stationary or
non—-homogeneous) .

. A common assumption for a Poisson process N (or any point process) is
that its mean A takes the form A(A) = fA Axdx. or A(dx) = Axdx: this A is
sometimes called the rate or intensity of N. Note that N is simple if and
only if A({x}) = O (which is true when A has the preceding form). In
general, when A({x}) > 0. then N({x}) is Poisson with that mean.

The prominance of Weiner and more general Gaussian processes is due
primarily to the central limit phenomenon that these processes arise as

limits of processes of sums of random variables (sce for instance Billingsley
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(1968)). Similarly. the prominance of Poisson processes stems from the

property that they arise as limits of sums of uniformly sparce point . ;
processes (see Theorem 3.4). They also arise as limits of processes of rare %
events (see Theorem 3.7). Many actual point processes can indeed be viewed ) %
as superpositions of points from many sources or as processes of rare events. %
In addition, Poisson processes are building blocks for more complicated ?
'
processes. ;
There are a number of characterizations of Poisson processes. The b
Pyt
following one is based on the null probabilities P{N(A) = O}). We first b
present a sufficient condition for simplicity (see p. 203 of Jagers (1972) E
for the proof). 3
Lewma 1.7. Suppose N is a point process on E and there is a measure A on E ;2
such that A({x}) = O, x € E and P(N(B) 2 2} = o(A(B)) as A(B) 2 O0. Then N is é
simple. . .1
Proposition 1.8. Suppose N is a point process on E that satisfies the 1
hypothesis of Lemma 1.7 and P{N(B) = 0} = ¢ B) B c 4. Then N is a Poisson :"
process with mean measure A. "
Proof. By Lemma 1.7, N is simple and so by Remark 1.2(b), the distribution f‘
of N is uniquely determined by the null probabilities P{N(B) = O}. But
these, by assumption, are those of a Poisson process with mean A. -
The next result gives an expression for the Laplace functional of E
Poisson processes. The proof demonstrates a common approach for deriving | ??
Laplace functionals in general. We shall return to Poisson processes in the .~y
next section. Et
Proposition 1.9. If N is a Poisson process with mean measure A then N
Ly(F) = expl-f(1-¢" D)acan) . .
R
-
o)
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Proof. Denote the right side by G(f). First, consider the simple function

o)

f(x) = T ¢ 1(x€B, ). where B ....,B are disjoint in 4. Since

N(Bl)""'N(Bn) are independent Poisson variables,

n n -tkN(Bk)
LN(f) = E(exp[-kzl tkN(Bk)]} = kﬂl E[e ]

n
= kﬂl exp[—A(Bk)(l—e )] = G(f).

Next, consider a function f such that {x: f(x) > O} € #. We can write f(x) =

lim fn(x). X € E, where the fn's are simple functions as above. Then by two
o

applications of the dominated convergence theorem and the preceding result,

we have

Ly(f) = 'll_x: Ly(f,) = ::: G(f_) = G(f).

Finally, consider any function f, and let Bn be a sequence in % such that
Bn t E. Define fn(x) = f(x)l(xGBn). and so {x: fn(x) > 0} € 4. Then the
preceding equalities hold by two applications of the monotone convergence
theorem.

For point processes on R+ or R, it is common to specify their
distributions by specifying the distributions of their point locations or

their inter-point distances. The primary excmple is the renewal process.

o
Definition 1.10. Let N = 3 6T be a point process on R+. and let Wl = T1
n=1 n

and Wn = Tn - Tn-l' n=2.3,... The N is a renewal process with waiting time

distribution F if wl.wz.... are independent and each one has the distribution
F. For simplicity, we assume that F(O) = O, and so N is simple. We call

Tl < T2 < ... the renewal times of N and wl,wz.... the waiting times between

renewals.

\ :b'f" e
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Remark 1.11. The distribution of a renewal process is uniquely determined by B

its waiting time distribution. To see this, suppose N and N' are two renewal

U PR R s

processes. By Remark 1.2(c) we know that N d N' if and only if (TI'T2"") d

- e

ey

-

(T!.Ta....).

{T}. 715, But the latter is equivalent to (W 2....) d (Wi,Wé....) which °

|-

is equivalent to F = F'. Thus N g N' if and only if F = F'. This uniqueness

property is used, for instance, in stochastic comparisons or convergence

- o e o
Sy a0y ]

results. *&
Although renewal processes have a simple structure, their Laplace i
'
functionals generally do not. We shall continue our discussion of renewal tt
’

processes in 84. ;
n

R,

I

1.5 Marked and Compound Point Processes .

In addition to their locations, the points of a point process may have

>
distinguishing attributes or attendant information, which are commonly called . .
-’
marks. The standard way of modeling marks is as follows. }:
b

v £
Consider a point process N = I 6X on E. Suppose that associated &?

n=! 'n ‘
with the point at Xn (n < v) there is a mrk Zn that takes values in some 5_
LY

space E'. Then the point process M on ExE' defined by -
v N
M(AXA') = 3 1(X_ €A, Z €A). AxA' € &x&’ e

n=1

represents the marks as well as the point locations.

Before we formalize this notion of marked point processes, consider the
special case in which the marks Zn are conditionally independent given N and
a mark for a point at x has the conditional distribution K(x.dz) (often

called a kernel); that is, for Al.....An in &',

P(Z, € A A AnIN. p > n} = K(XJ.AJ).

1

n 3
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In other words, the mark Zn at Xn = x, when v 2 n, depends on N only through
X. Then the Laplace functional of M is as follows. .
Lemmn 1.12. For f: E x E’ -’R+.
Ly(f) = Ly(e).
where g(x) = -log /E' e-f(x'z)K(x.dz).

Proof. Since the Zn's are conditionally independent given N, therefore

L
E{E[exp(- 3 £(X_.Z_))IN])

Ly(f)
M n=1

1
(g2}
——
=
m

b

E(exp[- 3 g(xn)l) = Ly(g).

n=1

We are now ready for our definition.
Definition 1.13. Suppose N is a point process on E and M is a point process

on E x E' such that N(A) = M(AxE'), A € £&. We call M a marked point process

of N. Furthermore, we say that M has location-dependent marks with

distribution K(x,dz) if the Laplace functional of M is as in Lemma 1.12.

Keep in mind that a typical representation of a marked point process is

v v
M= 3 éx 7 where N = 3 6x . If M has location-dependent marks ‘i
n=1 n'n n=1 n

distribution K(x.dz), then the mean measure of M is (recall Remark [.5),
E[M(AxA")] = E{E[M(AxA")[N]} = E{f,K(x.A*)N(dx)} = f, K(x.A")u(dx),
where pu is the mean measure of N. That is, EM(dxdz) = K(x.dz)u(dx}).

Moreover, for f: ExE' - R,

E[f, [, f(x.2)M(dxdz)] = f, f,. f(x.z)K(x.dz)u(dx).

S A AP P WA '.’ R AN A N \f '-r.:. """ LACPU AN AL AN '.~_'.-‘ -
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If N is a point process on R_ with marks that are real-valued (or are
vectors or elements of a semigroup). then these marks are of ten modeled by

the cumulative process

D .
Z(t) = 3 an(Tn < t), t€R+.
n=1 .
Alternate representations are 4
N, .
2(¢) = /') zMdxdz) = 3 Z_. 3
0 E' n=1

This process provides the same information as the marked process M.

Example 1.14 Marks as Functiomals of a Stochastic Process. Suppose Y = (Yt: 15
R

t 2 0} is a real-valued regenerative process over the times O < T1 < T2 <... *
(see 8§ 4.1). A typical mark of Tn might be the discounted cost f
&+

T L)

" aat .

z = ]T e (Y )de. ¥

n-1 ¥

where c(y) is the cost per unit time of Y being in state y. Then the - N
AN

:

cumu lative process :ﬁ
W

W5

N t TN ¢ _ ,'-‘

()= 3 2 =/ e "% c(Y )ds ‘

n s

n=1 0 B

is the discounted cost in the interval [O.TN ]J. This and a variety of other @
t oW

N

marks are functionals of the form i
W

Zn = ¢(Tn-l' Tn' (Yt; le(Tn-l'Tn]))' v,

¥

Another example is f
N N

L%

= Tot€ .:'.

Zn ma.x(YL t (Tn_l.Tn]). W

In situations where points occur in batches, an appropriate model might =

v | ‘b

be a compound point process defined as follows. j;
] 4

i

Definition 1.15. Suppose N is a point process on E and M is a marked point - ;ﬁ
process of N on Ex{0O.1....} with location-dependent marks having distribution )
]

"i
K(x.dz). The point process hﬁ
)
M

N
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3 Zn 6x (A), A€E,
n=1 n

N'(A) = [ [ z M(dxdz) =
A E

is a compound point process of N with mass distribution K(x.dz). The term

compound has traditionally been used only for location-independent marks
i where the Zn's are independent of N. For instance, when N is a Poisson
; process with mean A and K(x.dz) = F(dz) independent of x. then N’ is a

compound Poisson process whose points have the mean measure A and mass

distribution F. (This N' is a compound Poisson random measure when the Zn's
: are real-valued instead of integer-valued.)
Similar to Lemma 1.12, the Laplace functional of the compound point

process N' is

KRR R

Ly (F) = Ly(h).  where h(x) = - log 3 e */k(x.(z}).
z=0

and that for the compound Poisson process N' is

[
-zf(x
f (1.2) Ly (£) = exp|~fp = (1 - e > aa)r((zy)].
! z=0
L
T
)
‘
]
{
EH
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2. POISSON PROCESSES AND SOME RELATIVES

In this section, we characterize the structure of Poisson processes and
discuss several operations on them including sums, partitions, thinnings and
translations. We also give brief descriptions of sample processes, Cox

processes, negative binomial processes and cluster processes.

2.1 Characterization of Poisson Processes

The following results show how the distributions of the counting
variables for a Poisson process determine the distributions of its point
locations. Stationary Poisson processes on R+ or R are especially nicec.
Theorem 2.1. Suppose N is a stationary Poisson process on R+ with rate A.

Then the interpoint distances WI.W are independent exponentially

PUREE

distributed with mean A\ ! and.the location of the nth point T =3 W hasa

k=1"k
gamma distribution with order n and scale parameter A.
Proof. By the definition of a Poisson process, it follows that, for each n

and t > O,

P{W

el > :|wl.....wn) = P{N(T_.T +t] = O]Tn. N(B). BC(0.T 1}

= P{N[(0.t] = O} = e "',
Using this in an induction argument proves the assertion about the Wn's. The
gamma distribution of Tn is a standard consequence.

The preceding result and Remark 1.12(c) yield the following
characterization: A renewal process is a Poisson process if and only if its
waiting time distribution is exponential.

The next result characterizes the point locations of Poisson processes

on general spaces.

R
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Theorem 2.2. A point process N on E is a Poisson process with mean measure A

if and only if. for each B € B, the process N on B is &qual in distribution

v

to a point process N' = En-l 6U on B, where u.Ul.U .,... are independent

random variables such that v has a Poisson distribution with mean A(B) and
each Un takes values in B and has the distribution

F(A) = A(A)/A(B). ACB.
Proof. It suffices, by Theorem 1.4, to show that N’ has the Poissnn Laplace

functional shown in Proposition 1.9. But this follows since, by the

properties of u.Ul.U2..... we have
]
by (1) = EE(expl= 3 1(U)1lo)) = K(UJ eF ) F(ax)]”)
n=

exp{-AB)[1-f e p(ax)1} = exp[-f(1-¢" TV )a(ax) 1.

This result says that on a bounded set B, the Poisson number of points
N(B) are located as a random sample Ul‘U2"" from the distribution F. This
characterization is useful for deciding whether a Poisson process is an

appropriate model for a certain phenomenon. It is also useful for

v
applications: note, for instance, that f(x)N(dx) d Z f(U).
B nel n

Remark 2.3. For a point process on R*. the preceding result is usually

expressed as follows. Suppose that N is a Poisson process on R+ with mean A

and point locations O ¢ Tl < T2 ¢ ... Then, for a given t > 0, the
conditional distribution of Tl ..... Tn given N[ = n is equal to the
distribution of the order statistics U(l) < U(2) < ... ¢ U(n) of Ul""'Un

that are independent with distribution F(s) = As/At' 0¢s ¢ t. That is, for

0<Ct, Cu, < ... <t <u <1,
1 1 n n

q{
P
u
i

o~
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(2.1) P(T, € (t;.u].....T_ ¢ (tn.un]INt=n}

= n!(At - Au )...(At - Au ).
1 n n n

¥hen At = [5 Asds. this distribution has the density

= n!
fT LT IN =n(t!.....tn) = n.)\t ...A[ /A(t)
1 n t 1 n

For the special case when N is stationary with rate A, then Ul ..... Un are
uniformly distributed on [0,t]. and the last conditional density reduces to
nt/c".

Another immediate consequence of Theorem 2.2 is as follows. Suppose N

is a Poisson process on E with mean A. Then for each n, B € B, disjoint

Al""'Ak in ¥ and n ...t =0,
n! n,
(2.2) P(N(A]) =n .....N(A) = nkIN(B) =n} = Y Py - Py
where P, = A(Ai)/A(B). This is the multinomial probability that PR W
points in the sample Ul""'Un fall in the respective sets Al""'Ak where

p; = P(U_€A,).

2.2 Sample Processes
The order statistic property of Poisson processes in Theorem 2.2 is

characteristic of the following important family of finite point processes.

Suppose Xl.Xz.... are independent random variables that take values in E
and each one has the distribution F. Then N = 22_1 6x is 2 point process on
- k
E with

n

Ly(f) = E{cxp[— 3 r(xk)]} = Uy e Fpaxy ™.

A <P I

=

A Y
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Any point process on E that is equal in distribution to N (or has the

preceding laplace functional) is called a sample process on E with mean

measure nF. Now, suppose v is a non-negative integer-valued random variable
independent of N. Then N' = sY 6X is a point process on E with
k=1 k

Ly (F) = G/ e F(¥E(ax)). where G(s) = E(s").
Any point process on E that is equal in distribution to N' is called a mixed

sample process with mean measure EvF (N' is N with v randomized and hence is

a mixture of N).

Example 2.4. A Dispatching Model. Suppose that a random number v of items
(e.g. parts or data packets) arrive at a station in a fixed time interval
[0.T]. The times at which the items arrive are independent with distributin

F. and are independent of v. At fixed times O = to < tI <...< tn = T. the

accumulated items are instantaneously dispatched from the station. Then the
total waiting time of the items at the station up to time T is

n-1 ltk+l
W(e .....t ) = 3 N(t,.t, + uldu,
1 n k=0 e k' 'k

where N is the mixed sample process defined above. Note that
t

n=1 f
EW(e ....,t ) =Ev Z
L n k=0 ‘K

(the expectation can be taken inside the integral by Fubini's theorem). This

k+1
[F(tk+u) - F(tk)]du

expression can be used to optimize the dispatch times tl.....tn and the
number n of dispatches as well. For instance, if there is a cost ¢ for each
dispatch and a cost h per unit time for holding each item, then the problem
is

min {cn + hE[W(tl.....tn)]).
l.....tn

For the case in which N is a stationary Poisson process with rate A, one can

I TR I L I L L P TL IS LIPS UL R AT AT T AT AT AT AT M "
|.' R eI St D LA I S i A .f. oy . MO S e e R ) . " W o W,
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*
show by a calculus argument that the optimal n is one of the integers

ad jacent to T(h}\/2c)l/2 and the optimal [; = KT/n" (equally spaced times).

Example 2.5. Discounted Costs. Suppose N = 2:_1 bT is a point process of
times in a period [0.T] at which a company incurs costs Zl"""zv' Then the
discounted cost up to time t is
Nt —aTn
C = 2 Ze . 0<¢t(T.
t n
n=1
Suppose N is a mixed sample process as above and 21,22.... are independent
with distribution G and are independent of N. Let M = Zz_l 6T 7 - Clearly,
n'"n
EM(dtdz) = EvF(dt)G(dz). Then
t -as .
=E /O IR ze M(dsdz)]
- t S ;
= EZEv [0 F(ds).
For the special case in which N is a stationary Poisson process with rate A,
so that F(dt) = T 'dt and Ev = AT, then EC, = (Ma) EZ (1-e %),

2.3 Sums, Partitions, Thinnings and Translations of Poisson Processes

Some standard operations on point processes are summing of processes,
partitioning a process into several subprocesses. thinning (deleting) points
in a process. and translating the points in a process. We shall now discuss
these operations for Poisson processes.

We first observe that a sum of independent Poisson processes is also

PN e
w0 lfl_(‘_“h.‘ f‘L- FRPRPIR GG PO

Poisson.

Theorem 2.6. If Nl.....Nn are independent Poisson processes on E with

respective mean measures Al""'An' then N = Nl+...+Nn is a Poisson process

with mean measure A = Al+...+An.
v A e -, - L IR T IR R R -'.~" R N A P RN ‘T'_ AR l\'."“l.‘ﬂl.-“--\'\|"\ \--“
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Proof. This follows immediately from the defining properties of a Poisson

process. Another approach is to observe that -

n n
(f) n f) = I
LN k=1 LNk( k=

, exp [ - !(1-e’f‘*’)Ak(dx)] 3

- N
= exp[ - f(1-e f(x)):\(dx)]. :’
[+ ] .
This result extends to infinite sums N = 3 N when A(B) < @ for B € B. ;
k=0 N
It also holds for other families of processes including stationary. Cox f
]
(82.4). infinitely divisible and independent increment processes (8 3.3), and n}
”
(
mixed sample processes with a common sample distribution. On the other hand, h
it does not hold for renewal processes or stationary interval processes 2
«
W
(8 4.5). W
\
N
A large class of marked point processes of Poisson processes are also g
{
>
Poisson. N
it
\
Proposition 2.7. Suppose N is a Poisson process on E with mean A and M is a i
J
marked point process of N on E x E' with position-dependent marks having 4
distribution K(x.dz). Then M is a Poisson process with mean measure i
)
)
A(dx)K(x.dz). ?
4
Proof. This follows since Proposition 1.9 and Lemma 1.12 yield s,
-g(x) &

(D) = Ly(e) = exp| - f(1-eU)aqax)

exp| = [ (1 = T2 A(@K(x.02) .

-

We now discuss partitions and thinnings of a point process N on E. By a

- D
partition of N we mean any collection of point processes Nl""'Nn on E such N

)

. that N = Nl+"'+Nn' Typically, N is a "parent” process and each of its A
»,

A

points is assigned randomly, by some rule, to one of the subprocesses )

K

F

P

k
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Nl""'Nn' There is a one-to-one correspondence between partitions N

l.....Nn

of N and marked point processes M of N on Ex{l.....n}: namely,

)]
N (A) = M(Ax{k}) = nzl I(X €A, Z =k).  A€E, k=l.....n.

The mark Zn indicates the subprocess to which the point at Xn is assigned.

As an example, suppose Xl < X2 { ... are times at which data packets enter a
computer data base consisting of n files and 21.22.... are the respective
files to which the packets are sent. Then Nk models the number of packets
entering file k over time. Analogous partitions depict multiple customer
flows in queueing networks, part flows in manufacturing systems, and demand
occurrences in economic markets. In some cases the partitioning rule is
implicit: If each point of N has one of n attributes, then Nl""'Nn can
serve as models of the numbers of points with these respective attributes.

The notion of thinning o; the point process N refers to the operation of

randomly deleting some of its points. In general, a point process N' on E

such that N'(A) { N(A), A € E, is called a thinning of N (N' is a thinner

version of N). Any subprocess in a partition of N is a thinning of N.
We shall consider the following basic partitions and thinnings. We say

that Nl""'Nn is a partition of N based on the probabilities pl(x) ..... pl(x)

if a point of N at x is assigned to subprocess Nk with probability pk(x)
independent of everything else (i.e. Zl.22.... are position-dependent with

distribution p, (t) = P {Z =k | X_=x, nd»v} . Similarly, we say that N' is a
k n n

p{x) - thinning of N if a point of N at x is retained (assigned to N') with
probability p(x) independent of everything else.
Theorem 2.8. Suppose N is a Poisson process on E with mean A. If N

is a partition of N based on the probabilities pl(x) ..... pn(x). then

Nl""'Nn are independent Poisson processes with respective mean measures




pl(x)A(dx).....pn(x)A(dx). Hence, if N’ is a p(x)-thinning of N, than N' is
a Poisson process with mean measure p(x)A(dx). -

Proof. Let M be the marked point process on E x {1,....n} such that

Nk(A) = M(A x {k}). Since N is Poisson, Proposition 2.7 implies that M is

also Poisson with mean EM(dx x {k}) = pk(x)A(dx). Thus each N, is Poisson

k
with mean pk(x)A(dx). Moreover, Nl""’Nn are independent since they are the
restriction of the Poisson process M to the disjoint sets E x {1},...,E x{n},
respectively.

Example 2.9. Non-statiomary Poisson Processes as Time Transformations or
Thinnings of Stationary Processes. Let N be a Poisson process on R+ with
mean At = ]8 Asds. Let Nl be a stationary Poisson process on R with rate 1,
and let Nlo A denote the point process on R _defined by Nlo A(a.b] =

Nl(Aa'Ab]' a < b. Clearly No A has independent increments and N o A is

1 I
Poisson with mean At' Therefore, N Nl o A. That is, N is a time
transformation of the stationary Poisson process Nl' Another
characterization of N is as follows. Consider N on E = [0,T] where AT (@
and let N' be a p{x) - thinning of Nl with n(x) = AX/AT. 0 (x {T. then
Theorem 2.8 yields N g N'. This representation is convenient for simulations
of N (Lewis and Shedler (1979)). One need only generate points of N1 on E,
say_Tl.....Tn and then retain the point at Tj with probability p(Tj). The
resulting points constitute N. This procedure requires the evaluation of
only AT'/AT. J=l.....n, (the integral A[ need not be evaluated as in the

J
time-transformation characterization). Note that this procedure can also be
used for E C Rd.

Another common operation on a point process is a random translation of

its points. Suppose N is a point process on E and E is closed under addition

N
" e
t fz‘*-d u." 5\_1';.‘1' PR
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(x + z € E for each x,z € E). Suppose N' is a point process on E of the

form, -

1
I(x+z€A)M(dxdz) = 3 1(X +Z €A), AcCE,

E2 n=l1
b

where M = En—l 6x z is a marked point process of N on E2 whose marks are
n' n

N*(A)

/

independent with distribution F. That is, N' is the process N with each
point at x translated a random distance with distribution F (i.e. Xn is

translated to Xn+Zn). From Lemma .13, we have
Ly-(f) = E{exp[— f 2f(x+z)M(dxdz)]} = Ly(g)
E

where g(x) = - log /E.e—f(X+z) F(dz). Here is a special case.

Theorem 2.10. If N is a Poisson process with mean measure A. then its
translated version N' defined above is a Poisson process with mean measure
A (A) = ]EA(A—z) F(dz).

Proof. This follows since a substitution of the Poisson Laplace functional

LN in the preceding expression yields

Ly-(£)

exp| - J 500 - e‘f("*z))p(dzmdx)]

r

= op| - Jg(1 - T Wynean].

2.4 Cox Processes
One can construct natural generalizations of random variables by
randomizing their parameters. For example. a random variable with

distribution P(X ¢ x) = fm (1 - e—Ax)F(dA) is called an F-mixture of
0o

exponential distributions or an exponential random variable with a random
parameter that has the distribution F. This procedure of randomizing

parameters also extends to stochastic processes (recall the mixed sample

AN NN NN N
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process). Another primary example is the Cox process: a Poisson process
with randomized intensity. .
Definition 2.11. Let N be a point process on E and A be a random measure on

E (not necessarily on the same probability space as N). The N is a Cox

process directed by A if, for each nl.....nk and disjoint Al ..... K

k n, -A.(A.)
P(N(A)) =n,.....N(A) =n )} =E AA;) Jeg J4°J /!

J=1

This is equivalent to

Ly(f) = E{exp[— fg (1 - e‘f(x))A(dx)]}.
Cox (1955) introduced this process, which is sometimes called a doubly
stochastic Poisson process. a conditional Poisson process, or a Poisson
process in a random environment.

As an example. suppose N is a point process on R+ that represents the
number of failures over time ;f a robot in a manufacturing plant. The robot
makes several types of parts and when it is used on a job of type u, its
number of failures is a Poisson process with constant rate a(u).
Consequently, if the production schedule were specified by a non-random
function u(t), then N would be a Poisson process with mean measure
At = [é a(u(s))ds. Suppose, however. that the production schedule is a
stochastic process (Ut; t 2 0} that is not affected by the failures. Then
the failure process N is a Cox process directed by A. where At = ]g a(Us)ds.
t > 0.

Since Cox processes are essentially Poisson processes, each result for
Poisson processes generally has a counterpart for Cox processes. Some
elementary properties of Cox processes are as follows (see‘Brénnud (1981).
Crandell (1976), Karr (1986). and Synder (1975) for further discussior).

Here N is a Cox process directed by A.




S0 ; P AR AT _'(:'-ﬁ '."_'.:' e
$ AR LR oy
;_fn.(n_ M W (Tt W L{LCL'LL..L U DA,

(a) EN(A) = EA(A), . VarN(A) =EA(A) + VarA(A)
M[k](Al""‘Ak) = E[Al(Al)...Ak(Ak)]. °

(b) N is simple if and only if A({x}) =0 a.s., x € E.

(c) N is stationary if and only if A is stationary (the definition being
similar to that for point processes). When A(A) = /Akxdx. then A is
stationary if and only if (Ax: x€E} is a stationary process (cf. 85.1).

(d) When E = R*. then N N o A. recall Example 2.9, where Nl is a
stationary Poisson processes with rate ! independent of A.

(e) The Poisson results in the preceding sections readily extend to N. For

instance, if Nl""'Nn is a partition of N based on the probabilities
pl(x).....pn(x). then each Nk is a Cox process directed by pk(x)A(dx)
and Nl""'Nn are conditionally independent given A.

Example 2.12. Negative Binomial Processes. Let N be a Cox process on E
directed by A. Suppose A = Yu, where p is a non-random measure on E and Y is
a random variable. Such a Cox process is sometimes called a mixed Poisson
process. Then the Laplace functional of N reduces to

Ly(f) = o(Jp (1 - e T(X)y Ldx)Y.  where o(s) = E(e5Y).
Now consider the special case in which Y has a gamma distribution with
#(s) = (1+s) . Then

(1) = 1o S (- 7T o]

In particular, for A, ...., Ak in E.
n n

- = -3

oo [ 3, wr]) - ot -

n
where p =[l + A( U Ai)]-l and q = pA(Ak). This is the multivariate
i=1

qrtr)]r t, € [0.1].

laplace transtorm of the n-dimensional negative binomial distribution with

parameters n.p.q..... q.- That is, the finite dimensional distributions are
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negative binomial. Accordingly. N is called a negative binomial point

process (Gregoire (1983) and Diggle and Milne (1983)).°
The preceding is not the only type of negative binomial process. Here

is another one. Let N = 2:_1 anT be a compound Poisson process on E whose
n

Poisson points have mean A and whose masses Zn have the probability density

P(Zn =m} = (pm/m)log[l/(l—p)]. m=1,.2,..., where O < p < 1. Then from

(1.2). we have

Ly(f)

exp { -z [ - e‘”“x’)A(dx)(pm/m)log[1/(1—p)]}
m=1 E

exp [ log [(1 - pe TV (1 = p)1/log(1-p)A(dx).

In particular, for disjoint Al.....An.

n n -A(A_ )/ log(l - p)
Edexp| - = o¢NA) = T [(1-p)/(L -pt,)] I .
k ‘k k
k=1 k=1
Again, this is an n-variate negative binomial Laplace transform. In this

case, N has independent increments, which was not true for the preceding

example.

2.5 Poisson Cluster Processes

Let N = Zz_l bx be a point process on E. Suppose there are point

proéesses Nl ..... ND on some space E' representing clusters of points
associated with the respective points Xl.....XD, and that Ez=1 Nn(B) o B
€ B. Then N' = Ez=l Nn is a point process on E' representing the
superposition of the clusters. Suppose, in addition, that N1 ..... N are
position-dependent marks of Xl ..... X“ with distribution

K(x.A) = P(N CA | Xn = x., b 2 n}, for A Horel in &7,

ot ¥ Tttt St e . T T S S
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where X' is the set of all counting measures 4 on E'. Then the Laplace
functional of a single cluster is .
L(f:x) = E(exp[- IE-f(y)Nn(dy)] | X, =x. v2n)
=, exp[-lE.f(y)u(dy)]K(X-du)-
Furthermore,
Ly (£) = E{ [exp(- 2 IE F(y)N_(dy)) | N]}
n=1
v v
= E{ T L(f: X )} = E{exp T log L(f:X )}.
n=1 n n=1 n
Thus,
LN.(f) = LN(g) where g(x) = - log L(f:x).

A point process N’

whose-distribution has a Laplace functional of this

form is called a cluster process of N whose clusters have distribution

K(x,du).

We call N' a Poisson cluster process when the parent process N is

In this case,

Ly-(f) = exp{ - IE. ]N.(l

where A is the mean of N.

Poisson.
- e-“(”“(d”)K(x.d,u)l\(dx)}

Note that any point process of the form

N'(A) = [ pu(A) M(dxdu)

ExA'

is a cluster process of N when M is a Marked point process on Ex¥' of N with

location-dependent marks with distribution K(x.du). Note that a compound

Poisson process is a special case of a Poisson cluster process.

Example 2.13. Neyman-Scott Cluster Process. Suppose N is a stationary

Poisson process on E = with rate A whose point locations represent cluster

centers. Associated with a center, say at x, there is a cluster of 3 points

whose distances from x are independent and identically distributed and f3 is a

A

.'l

"
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random variable independent of x and the distances. In other words, a single

cluster process centered at x is equal in distribution to the mixed sample

B
process N= 3 5 . where B.Y .Y,.... are independent and each Y, has the .
k=1 Vi 1r2 k

distribution F. Let N’ denote the sum of these single clusters centered at
the point locations of N. Then N' is a Poisson cluster process whose

clusters have the laplace functional (recall § 2.2)

Elexe |- Jg. 1N (an |}

S e

L(f:x)

c(fg e T p(ayy)

where G(s) = E(sP).

See Cox and Isham (1980) for further discussion of this and other y
cluster processes. Also. Serfozo (1984a) shows that a Cox process may be a A
good approximation for a clus;er process whose clusters and points within a

cluster are sparse (this is analogous to the Poisson approximation for rare

events as in Theorem 3.7). 3
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3. QDNVERGENCE IN DISTRIBUTION OF POINT PROCESSES

As in many areas of probability, the notion of comwergence in
distribution plays an important role in the theory and applications of point
processes. The focus of this section is on the convergence in distribution
of sums of independent point processes to Poisson and infinitely divisible

processes and on related rates of convergence and Poisson approximations.

3.1 Basics of Convergence in Distribution

We begin with a short review. Suppose X.XI.X are random variables

g

that take values in E (think of these as general random elements not as

locations of points). The sequence gn converges in distribution to X.
written Xn q X. if Ef(Xn) - Ef(X) for every bounded continuous f: E - R (i.e.
the probability distribution ef Xn converges weakly to that of X). A simple
characterization is that Xn g X if and only if P(XneA)-e P{X€A} for each A€E
with P{X€ dA)}) = O (here JA means the boundary of A}.

The importance of convergence in distribution is manifest by the
following basic results (see Billingsley (1968) for further properties of
convergence in distribution).

Continuous Mapping Principle. If Xn d X. then f(Xn) q f(X) for every

continuous f: E - E’.

Convergence of Expectations. Suppose E = R* and Xn ﬂ X. Then EXn 2 EX (o

if and only if the X_are uniformly integrable: sup E[an(lxnl > x)] =20 as
n

X — ®,
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We now return to point processes. For a point process N on E. we define
BN = {( B€ B: N(GB) =0 a.s.}) and define IN as the set-of all intervals in

BN. Let N.NI.N2.... be point processes on E. Here are some

d
characterizations of the convergence Nn -+ N, which is defined as above (see

Theorem 4.2 in Kallenberg (1983)).

Theorem 3.1. The following statements are equivalent.

(i) N 9.

(1) (N (1,).....N (1)) 4 (N1 N(I)).  I....1 in Iy
(ii1) [ F(ON_(dx) 4 fg F(ON(dx).  feC

(iv) Ly (F) > Ly(f).  feC.
n

K-

It is easy to see that when statement (ii) is true, then it also holds
for any Il.....Ik in E with Ngan) = 0 a.s. Similarly. statement (iii)
extends to bounded f: E » R _with {x: f(x) > 0} € B and N(Df) = 0 a.s., where
Df is the set of discountinuity points of f. Condition (iv) is commonly used
to establish (i), while (ii) and (iii) are used as properties or consequences
of Nn g N.

An elementary type of convergence is if Nn is a sequence of point
processes defined by parameters a (e.g. a vector of numbers and measures),
and Nn converges if a does. For example, if Nn is a Cox process directed by
An And An ﬂ A, then Nn ﬂ N where N is a Cox process directed by A. Similar
statements apply to Poisson., negative binomial and sample processes. Also,
when E = R+. then from Remark 1.2 it follows that Nn g N if and only if their
point locations or interpoint locations converge accordingly

((Tnl ..... Tnk) q (Tl""'Tk) for each k). In particular, renewal processes
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Nn ﬂ N if and only if their waiting time distributions converge accordingly
(Fn(x) - F(x) for each F-continuity point x). .
The following is a useful characterization of convergence when the limit

process is simple.

Theorem 3.2. Suppose N is simple and

‘ (3.1) lim limsup P{N (B) > m} = O, BeB.
n

Y m—e n—w

, Then Nn ﬂ N if and only if

; lim P{Nn(B) = 0} = P{N(B) = 0}, BGBN.

§

n-—xo

Proof. The necessity follows from Theorem 3.1, and the sufficiency follows
from the uniqueness property in Remark 1.2(b) (since (3.1) implies that Nn is
relatively compact; see 84 in Kallenberg (1983)).

Remark 3.3. A sufficient condition for (3.1) is lim sup ENn(I) < EN(I) < =,
- n-—

I € IN (see 84 in Kallenberg (1983)).

3.2. Convergence to Poisson Processes
We now show that Poisson processes arise as limits of sums of sparce

point processes and as limits of rare-event processes.

Suppose. for each n, that an.an.... is a finite or infinite sequence
of independent point processes on E such that 2 Nnj(B) (o, BeB, a.s. and
' J

that they are uniformly null:

lim sup P(Nn.(I) > 1) =0, I€l.
n-o  j J

We call (Nnj) a null array of point processes.

B T T T e T T i e e L I
e A Y e A T e N e e T P T e A T T T -
R A A N AN T A A N A N N N AN AN I
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My
0
K The following result is due to Crigelionis (1963) (he proved it for E=R
B and Jagers (1972) proved it for general spaces; see pp 175-6 in Kallenberg
Al
" (1983) for further credits).
K}
ﬂ ) Theorem 3.4. Suppose {Nnj) is a null array and N is a Poisson process with
S mean A. Then X N . d N if and only if
N Jnj
o (3.2) lim 3 P(N ((B) > 1} = A(B).  BeBy. and
‘ e
! (3.3) lim 3 PN_.(B) >2} =0  BeB.
« n—e J
. Proof. This is a special case of Theorem 3.8. To illustrate the analysis
* dealing with convergence, we shall apply Theorem 3.2 to prove that (3.2) and h
kA R
3 (3.3) imply Nn d N when N is simple. Fix B€B and let pnj = P(Nnj(B) 2 1} and
i N =3 N .. We can write,
b 4 n . nj
b J
(3.4) P(Nn(B) =0} =T P{Nnj(B) = 0} = exp 2 log P{Nj(B) = 0)
A J J
‘\
e
i ® K
N =exp( -2Zp . -2 I p_ ./k).
M ke
. Now for n large enough so that sup P { 1/2, we have
g J
) >k 2 T x
>, > 3 P Sk <3 P, 3 P < 2 sup P Sp .=0.
‘ j ket ™ § My ond ;Mg

f Using this and the assumption I Pnj A(B) in (3.4) yields

: PIN (B) = 0) » e MBY - ping) = 0y, BB, .
% n
Next, observe that

5

3

-

,:'

s

A

K

K

o
e e e e e e e e e e e e '.v~_-'-..-_._'~ . -,':_‘.'_'.*_".', N _..:_.' S
.,: ‘:).;,:_.__‘.._'._‘,-\_\.\:_._\.__; e R e \i

S
e T, P I AL A T R i i T I S VA L TR TR LA AR S W M.Ahh



[SERY] - ng v aksYoue e 9e° TR U YU W\ ¥y 0 2" b 474 05 g0 2 A e gtE 0t " 8% 2l g g N gk (R B ] RARASNARARNN .
Lot Lo Py

i 36
't
f
LA
¢ P(Nn(B) 2 k} ¢ P{U (Nnj(B) > 2} U{at least k different Nnj(B) = l)}
J
L -
r
l
. ¢S P{N_ (B) >2})+ 3 P . ...p_.
1 ; nj - . ; n) nj
f J Jl<...<Jk 1 k
K CS PN (B) > 2} + (3 p )f oAl
\ . nj . nj
P J J
t m
i Since A(B) < =, we can choose a finite partition B = U Bi with A(Bi) <1
i=l
P for each i. Then using P(N (B) > k} ¢ 2';'_1 P(N (B;) 2 k} and the preceding
b =
[ limit, we have
A m K
B lim lim sup P{N (B) 2 k} < lim X A(B.)" = 0.
. k-  p-wo n k= i=1 !
’ Thus Theorem 3.2 yields N S N.
4
! The preceding result is frequently used to justify a Poisson model for
sums of sparce processes. Care should be taken in invoking this result,
a8
however, since the sum Eanj may converge to limits that are not Poisson: see )
Y
.
': Theorem 3.8. The closeness of sznj to being Poisson can sometimes be
assessed by results as in 8 3.4. A corollary of the preceding for sums of
renewal processes is as follows. :
- L
- Corollary 3.5. Suppose an.an.... are independent renewal processes with b
interpoint distributions Fnl'Fn2""' respectively, such that
; (3.5) lim sup Fn.(t) = 0. t > 0.
e j J
Let N be a Poisson process on R+ with mean A. Then Zi Nnj g N if and only if

2 Fnj(t) - A(O0.t]., for each t with A({t}) = O.
£ j

e m o e A S Al

Proof. By Theorem 3.4, it suffices to show that (3.5H) is equivalent to (3.2)

! and (3.3). But this follows immediately from the relations

-
- e—
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= PN (0.¢] 2 1) = 2F (1)

J J
3 P(N, (0.t] 22) = ZF #F (c) <IF ()2 < sup F (1) IF_(t).
- . nj nj . nj
J J J t J
Example 3.6. Suppose NI'N2"" are independent renewal processes with

=1

to infinity. However, we would like to normalize this sum, as in a central

interpoint distribution F. Consider the sum 2? Nj' As no, this sum tends

limit phenomenon, so that it converges to some point process. A natural way

to do this is by rescaling the time axis. Accordingly, consider the process

n
Nn(O.t] = .2 NJ(O.t/n]
j=1
which is the sum with the time axis expanded such that 1/n is the new unit of

time. Suppose the derivative F'(0) = A > 0. Then clearly

Nnj(O.t] = Nj(O.t/n] is a renewal process with interpoint distribution

n
F(t/n), and the conditions of Corollary 3.5 are satisfied with 2

j=1
P(NJ(O.t/n] 21} =n F(t/n) » tA as nw. Thus Nn g N. a stationary Poisson

process with rate A.

The Poisson process is sometimes referred to as a point process of rate
events because of the classical result that the number of successes in a
sequence of Bernoulli trials is asymptotically Poisson as the probability of
sucéess tends to O. We shall now present this rareness property for point
processes other than Bernoulli processes. We discuss rareness in terms of
thinning (recall 82.3).

Let N be a point process on E = Rd. Suppose NA is a pn—thinning of N,

where P, " 0] (pn is the probability of retaining a point). As P, 0. the

Y - T N T A = e \u\-' II'\" __ TRON e
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points of Nn are rarer and Né d 0. We would like to normalize NA to study
its asymptotic behavior. Accordingly, consider the prdcess Nn(B) = NA(p;lB).
which is the thinned process with the space Rd compressed such that p;l is
the new unit of volume. In addition. suppose that N satisfies the weak law
| of large numbers
N(Bk)/]Bkl - A as k » o
for any sequence Bk in B with the area |Bk| - o, where A\ is a positive
constant.

Theorem 3.7. Under the preceding assumptions, Nn Q N*. where N° is a

stationary Poisson process with rate A.

Proof. One approach is to verify LN (f) » L (f) by direct computations. An
n N

alternative, informative approach is to observe that this assertion is a

“randomized version” of Theorem 3.4. Namely. suppose N = 2?_1 bx . and let
3

Z . .Z ,.... be independent Bernoulli random variables with p = P{Z
nl’ n2 n nj

1}.
Then we can write

B PR L
N_(B) = N'(p_'B) = jfl Z,; 1(X€p "B = j

where N . =7 b . Now, note that, given N, the {N _} satisfy the
nj nj ann n)

: Nnj(B)'

h M

assumptions of Theorem 3.4 (in terms of probubilities conditioned on N) with

hMe

-1 d
P(N ;(B) 2 1 [ N} = p N(p 'B) >A[B|.

Jj=1

Consequently.
E{exp[— I f(x)Nn(dx)] | N } 4 exp [— fet = e O yax| = L ).

Then taking expectations yields LN (f) - LN*(fL
n

Y
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Rényi (1967) proved Theorem 3.7 for a renewal process N. A special case ]
is where N is non-random with one point at each integer-1,2,... Then Nn is a

Bernoulli point process with probability P, of a point at each of the

. -

- locations P, 2pn. Bpn..... where pnN(p;lt) - t, and Nn d N* is the classical

Binomial-to-Poisson convergence. This result {(which is a functional limit \

theorem) can be viewed as the Poisson analogue of Donsker's functional g
central limit theorem for sums with the Weiner process as a limit. The

. . vl - : .
normalization N (p B) is rather natural: a normalization of the form

a N (b B) is analogous to (Ek 1 Zk an)/bn (note that bn rescales the space

S - g

in the former and rescales the quantity in the latter). Kallenberg (1983)
extended Theorem 3.7 to general E and initial processes N that vary with n

such that the limits are nonstationary Poisson or Cox processes. For further

;
results on thinnings of point-processes, see Serfozo (1980, 1984a.b) and the
references therein.
A ]
)
. 3.3 Convergence to Infinitely Divisible Point Processes
We saw that the sum 3 Nnj of a null array of point processes my
Y J
3 converge in distribution to a Poisson process. Other limits, however, are
; possible. We now show that such sums may converge to infinitely divisible

point processes and that these are the only possible limits.

A point process N on E is infinitely divisible if for each n there are

independent identically distributed point processes Nl""'Nn such that

. N g Nl+"'+Nn' We shall also be interested in point processes that are

PSS NS Y R .-h'-’- a8

infinitely divisible with independent increments. The following are useful
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characterizations for such processes (these are from Theorems 7.1, 7.2 and
6.1, respectively. in Kallenberg (1983)). -

(a) A process N has independent increments if and only if it has a

k
representation of the form N =N+ 3 Z.6 ., where N' is infintely

j=1 3%

divisible with independent increments, xj are non-random points in E, k ( @
is non-random. and Zj are positive integer-valued random variables

independent of N'.

(b) A point process N is infinitely divisible with independent increments if

and only if
(3.6) Ly(£) = exp{— s [0 - e'"‘"("))wm(dx)}
m=0
where T is a measure on E. For example, when vm(dx) = F({m})A(dx). then N

is a compound Poisson process-whose Poisson points have meuan A and mass

distribution F.

(c) A point process N is infinitely divisible if and only if

. -Jf dx
(3.7) (0 = e {- £, [1- I OME pqn)
0
where n is a measure on the set NO of non-zero counting measures p on E such
that [ (1 - e_u(B))w(du) ¢ o, BEB. In other words. N is infinitely divisible
N
0

if and only if it is a Poisson cluster process (recall § 2.5).

The following are fundamental results on the convergence of sums: see
Theorems 6.1 and 7.2 of Kallenberg (1983). Suppose that (Nnj) is a null
array of point processes on E. Let N' be an infinitely divisible point
process on E with independent increments as in (b) and let N* be an

infinitely divisible point process on E as in (c).

\b.\'.-‘ A
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Theorem 3.8. If EJ Nnj ﬂ to some N, then N is infinitely divisible. A

necessary and sufficient condition for sznj g N' is that

Lim 3 PN (1) = m} = v (1), Iel

o j N

+

A necessary and sufficient condition for ZjN j g N* is that
lim 3 [1 - Ly (f)] =4, [1 . e_[r(x)“(dx)}n(du).
n—w nj 0

This condition is equivalent to

Vim 3PN (1)) = m N (D) = m) = n(uedgs p(T)) = mpa(D) = m )
o j
for Il.....lr in IN.

The preceding results show that infinitely divisible point processes
arise naturally as Poisson cluster processes and as sums of sparce point I
processes. They also arise as limits of compound point processes with
uniformly small masses, similqr to the Poisson rare-event property in Theorem
3.7; see 388 of Kallenberg (1983) and Serfozo (1984). The convergence of
point processes is an important tool for analyzing high-level exceedances or
rare events of a stochastic process. Here is an elementary example.

Example 3.9. High-Level Exceedances of a Random Walk. Let YI'YZ"' be a

Pap—

Al e PSPPI S ggagalde  SSSTHAer EFTAmEps e SNSRI o s o

simple random walk on {O.1..... } whose probabilities of moving forward or
backward one unit are respectively p and q=1-p, and P(Yk+l =1 | Yk =0} =1.
Consider the point process
(s 4]
Nn(t) = 3 1(Yk > n)ék[O.t]. t 2 0.

k=0

R P R
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This records the number of steps at which the walk exceeds the level n (or «
the amount of time the walk spends in [n.®)). We are interested in the

behavior of NA as the level n = ®  Accordingly, we consider the normalized

process Nn(t) = NA(ant). where a = (q/p)n/(q/p-l). As an application of T
Theorem 3.8, it follows that Nn g N. where N is a compound Poisson process v

W
with stationary Poisson points at rate (1-p/q)/2 and mass distribution .

D
F(ah) = 2 g (m)(p/a)™ ! (1-p/a)

f
’
where

.I
w1 [172 y 2
g(2k-1) = (-1) (4pa) /(2p) k 2 1. .
k S
The limit N is compound Poisson rather than just Poisson because there is a e
“~
clumping of points in Nni when the walk exceeds n it typically stays there ;
b

for several steps in succession before wandering below n. This result
appears in Serfozo (1980). See this paper. Leadbetter et. al (1983). Hsing A
et. al. (1987) and their references for similar results on high-level ;
exceedances, or level-crossings for stationary and other processes. :;
3.4 Poisson Approximations ;
Regarding the preceding convergence theorems, a typical concern is the -
»
rate of the convergence or the nearness of the distribution of EJNnj(A) to ;
. 2
that of its limit. There are several metrics or distance measures available K
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g for addressing such issues. We shall discuss the total-variation metric and
\ its use for assessing the quality of Poisson approximitions. The following
results are based on ideas in Serfling (1975), Serfozo (1986) and their
references.

1 We begin with an introduction to total-variation distances. Suppose X
and Y are real-valued random variables not necessarily on the same
probability space. The total variation distance between X and Y (or between

their distributions) is

d(X.Y) = sup |P{X€B} - P{YeB)|,
B

where the supremum is over all Borel sets B in R. When X and Y are

integer-valued, this reduces to

d(X.Y) = é 5 |P{X=m} - P{Y=m}|.
m

Here are some basic properties of this distance measure.

(a) Coupling Inequality: d(X.Y) ¢ P{X'#Y'}. for any random variables X' (Y'

on a single probability space such that X' g X and Y g Y. One can derive
bounds for d(X.Y) by constructing X', Y' for which P(X'#Y'} is small and
calculable. There are X' ,Y' for which equality obtains.

(b) Triangle Inequality: d(X.Y) < d(X.Z) + d(Z.Y).

(c) d(X.Y) < E[sup|P{X €B|U} - P{Y'€B|V}|]. for any random variables
B

X'.Y',U,V on a single probability space such that X' g X and Y' g Y. We

write this as d(X.Y) ¢ E[d(X'|U. Y'[V)].

B T o e S N R LA T
T A R Y o e e e e e L et e L Ay \}\’\;\*x
[ 8% Vi WA :A}.A\.'AMM.;!A‘LAM':L‘; - N, N>
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(d) If X,..... Xn are independent, and Y ...., Y“ are independent, then

(e) If X and Y are Poisson with respective means a and f3, then d(X.,Y) ¢
la-B].

(f) If X is a Bernoulli random variable with p = P{X=1}, and Y is Poisson
with mean p. then d(X.Y) ¢ pz.

(g) Measurable Mapping Principle: If d(Xn.X) - 0, then Xn g X and,

moreover, f(Xn) qd f(x) for any (measurable) f: R-R (cf. the continuous
mapping principle in 83.1). This observation is useful for establishing
limit theorems.

The next result, as we sgall show, is useful for assessing Poisson
approximations. Similar results hold for sums of dependent variables and for
compound Poisson approximations.

Theorem 3.10. Suppose Xl ..... Xn are independent non-negative integer-valued

random variables and Y is a Poisson random variable with mean «¢. Then

n n 2 n
d( T X..Y) ¢ S[P{X. 22} +P{X 21}]+ |la- 3= P{X. >1}].
j=1 7 r J j=tJ

(3%
1]

Proof: let Yl ..... Yn be independent Poisson random variables with respective

means P(Xlzl).....P(anl). Then by properties (b).(d).(e). we have

.,
M RNy
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n
(X, > 1)) +d( 3 I{(X.>1).
J jop

n
1)) + 3 d(1(X, >
j=1 J

n
+ la- 3 P(Xj > 1}].

Using d(Xj. l(X‘j 2 1)) = P{Xj 2 2} and d(l(XJ 2 1), Yj) < P(X.j 2 1)2 from (f)
in the last line yields the assertion.

We now apply the preceding ideas to point processes. Here is a
companion to the Poisson convergence in Theorem 3.4.
Corollary 3.11. Suppose (Nnj) is a null array of point processes on E and N

is a Poisson process on E with mean A. Then, for ACE,

d(3 N (A). N(A)) < X P(N_(A) 22} + 3 P(N_(A) 2 1y2
;N ; j ] J

+ |A(A) - 32 PIN,;(A) 2 1.
J

This is an immediate consequence of Theorem 3.10 (which also holds for
n==). Under the assumptions of Theorem 3.10, the right side of the preceding
inequality tends to O as n#*. One is typically interested in the case when N

has the mean A(A) = 3 P{Nnj(A) 2 1}: then the right side consists of only the
J

first two terms.
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The next result is a companion to the rare-event property of Theorem
3.7. °
Corollary 3.12. Suppose Nn is the rescaled pn-thinning of N as in Theorem

3.7 and N* is a stationary Poisson process with rate A. Then, for B€B,
k] 2 .
(3.8) d(N_(B). N“(B)) < p- E[N(p B)] + E[| AIB[ - p N(p B)|].

Proof. Using property (c), Theorem 3.10 and the notation in the proof of

Theorem 3.7, we have

D
d(N_(B). N"(B)) ¢ E[d(N_(B)IN. N(B))] ¢ E[,z

2
2 P(anl(pnxneB) = 1N} ]

)]
+ E[I AB| - jzl P{ anl(pnxn(B) = 1}]]

v v
2
= E[_z P l(annGB)] + E[l AB| - P pnl(annGB)l],
J=1 j=1
where the last two expectations are equal to those in the assertion.

Note that the right side of (3.8) tends to zero when N satisfies the

weak law of large numbers as in Theorem 3.7 and lim sup Py E[N(p"B)] ( =
n—e

(consequently, Nn(B) q N*(B). which we also know from Theorem 3.7).




RENEWAL THEORY
The theory of renewal processes was developed in the '40s, '50s and '60s
by Blackwell., Doob. Feller., Smith and others. The major topics of this
subject are: (a) The key renewal theorem, which describes the limiting
behavior of the solution to a renewal equation. (b) Applications of the key
renewal theorem to obtain limits of means and distributions of functionals of
renewal and regenerative processes. (c) Limit laws of renewal, compound
renewal or regenerative processes that are consequences of analogous limit
laws for sums of independent random variables. (d) Processes with a
renewal-like structure (e.g. alternating, transient, or branching renewal
processes). (e) Statistical properties of renewal and regenerative
processes. (f) Applications in systems that regenerate over time (e.g.
systems involving queueing, reliability, inventory control or cash flows).
Since renewal theory is a common topic in introductory texts on
stochastic processes, our coverage will be brief and confined to only the
first three topics, with a novel treatment of the last two. Basic references

are Feller (1971}, ginlar (1975) and Gut and Prabhu (1987).

4.1 Distributions of Renewal Processes
Suppose that N is a renewal process on R* with renewal times

0« Tl < T2 {... and independent waiting times between renewals WI.WZ....

that have the distribution F. For simplicity. we write N[ = N[0.t]. Some

useful relations between the numbers ol renewals and the renewal times are

(v ] @
o N : " L L
N[ = 2 l(Tn <)y = 3% nl(Tn <t < [n+l) = sup{n: rn <t} q
n=1 n=1 ]
(N2} = (T ¢ t}oand Ty <0 T . }

N = N +1
t t

These properties, which follow by inspection, are true for any point process

N on R* with N(R+) = ®, An immediate consequence is
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P(N_ = n) PN, 2n) =~ P{N_>n+ 1)

t
n* n+1)»

(0) - ¥

"

PT <t} = P(T_ <t} =F (t).

where Fn* is the n-th fold convolution of F. In addition. all moments of N[

are finite and

[+4] o
23
EN = 2 E[NT < 0)]= 3 F™ ().
n=1 n=1
The renewal function
@ tad
U(e) = S FP(t) = 1 + EN,

n=0

plays an important role in characterizing N and it is the focus of the key
renewal theorem. We first note that U and the distribution of N uniquely
determine each other. To see this, take the Laplace transform of the
preceding equation to get U(s) (1 - F(s)) . where G. F are lLaplace
transforms of U.,F. Then clearly U and F uniquely determine each other and
hence so do U and F. But we know by Remark 1.11 that ¥ and the distribution
of N uniquely determine each other. Thus the assertion follows. As an
example, N is a stationary Poisson process with rate p—l if and only if
U(t) =1 + t/p. Unfortunately, nice expressions for renewal functions are
the exception rather than the rule.

The following limit laws for N( describe its ascension to @ as t-w. We
let ¢ { ® denote the mean of F, and we interpret 1/® as 0. Recall that a
distribution F is arithmetic if its jumps are concentrated on points of the

form d.2d.3d.... and the largest d with this property is the span.

Strong Law of large Numbers: N[/t -+ 1/u a.s. (Corollary 4.12).

Central Limit Theorem: If the variance o? of F is [inite, then

(N[ - t/u)/(o tl/zp—3/2) d Z. where Z is a standard normal random variable.

<

Convergence of Moments: E(N[/t)r - (1/;1)r for r 2 1, and. when 02 exists,
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¢ ENt = t/u + (02 - “2)/(2u2) + o(l) and VarN[ = torz/u"3 + o(t),

‘ where t-= and, in case F is arithmetic, then t is a multiple of the span

(these statements follow from Example 4.8). ),
v A
h - Renewal processes are intimately related to processes that are '
[

regenerative or have regenerative increments as follows. Suppose X = (Xt: )

t€R+) is a stochastic process with state space E and sample paths in the set

D(R+.E) of all functions from R to E that are right-continuous and have

. left-hand limits. The X is a regenerative process with regeneration times

! . & . .
Tl.T2.... if N = En:l 6Tn is a renewal process and, for each Cpoeeen t,- W in
R+ and Al ..... Ak in £

: (4.1)  P(w . < Xy v CAL Xp - €A | Wi WX s (T )

é = P{Wl < w X[ € Al ..... X, € Ak}. n=20.,1

) 1 k

q]

The nth cycle of X consists of the information

] —_ . —
‘ fn = (Wn. (XT e 0 ¢u¢ Wn)). n=12,...
n-1
A which is the cycle time W =T - T and the trajectory of X in [T T 7.
A n n n-1 n-1""'n
Condition (4.1) is equivalent to §l‘§2"" being independent and identically

} ‘8
| distributed (which also implies that N is a renewal process). This

definition is equivalent to that in Cinlar (1975): we avoid his assumption

AL RS _ s = =

that_Tn is a stopping time of X by including W in (4.1). Positive

ntl

recurrent Markov or semi-Markov processes are examples of regenerative

processes.

Now suppose X = {XL;LCR+} has state space R and sample paths in D(R+,R).

(3]

The X has regenerative increments over TI'T2"" if N = Xn:l 6T is a renewil
n
(
: process and, for each w, Xpvoooo Xy and O ¢ S < t < ..o < S| < [k'
(4.2) P(Wn+l < w, XT P XT ,s < xl..,‘..‘(.r R XT re < Xy ‘
n 1 { n k n k 3
| W WX s < T )
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= P(Wl < w, Xt -XS < xl.....X[ - XS < xk). n=0,1,...

! 1 k
This condition has an interpretation similar to (4.1) via cycle information. -
Such processes are useful for modeling additive functionals of regenerative

processes ns in 84.3 and 84.4.

The notion of regeneration is also manifest in point processes. A point

process N on R+ is regenerative over Tl < T2 < oL if (Nt; t€R+} has

regenerative increments over these times. The Tn's need not necessarily be
points of N. For example, the times at which a regenerative process enters a
certain set form a regenerative point process. Also, a point process N on R+

has regenerative interpoint distances if Wl.Wz.... is a regenerative sequence

over discrete times v, < by < .... See Neuts (1979) and Wold (1948) for

related point processes (the N is a Wold process when WL.W2.... is

Markovian). The analysis of such point processes is similar in part to that

of renewal processes. -

4.2 Key Renewal Theorem

We now consider the renewal equation

f(t) =g(t) + f(t-s)F(ds), t 20, K
[0, ¢] A
where F is the distribution as above and f and g are functions from R+ to R+ =)

that are bounded on finite intervals. The F and g are known and f is
unknown. The f is typically the mean or distribution of a functional of N as
we discuss helow. The assumption that f.g are non-negative is for
convenience: one can treat real-valued f.g by considering their positive and
negative parts separately (the positive and negative parts of f are

f+(x) = mx{0.f(x)} and fm(x) = -min{0.f(x)}). The renewal equation [ = g +

Al (HYPPYYE N ALPETMAIEwe 5

F » f has the unique solution

'-’I.'.'.'

'y &=

.« £
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f(t) = f g(t-s)U(ds) = U »* g(t).
(0. t]
This is clearly a solution since g + (U % g) * F = U » é. See Chapter XI of

Feller (1971) for a proof of the uniqueness and for proofs of what fol lows.
A major issue of renewal theory is the existence of the limit of
U x g(t) as t-=. To describe this., we need one more concept. A function

g: R+ - R+ is directly Riemann integrable (denoted g€ D) if the following

sums exist

s(6) =& Z inf{g(x): (n-1)6 ¢ x ¢ né)
n=1

S(6) = 6 2 sup{g(x): (n-1)6 < x < nd}
n=1

and lim (S(8) - s(6)) = 0. Consequently, g is bounded on finite intervals
50

and

w0

lim s(8) = lim S(6) = [ g(x)dx.
0 6-0 0

which is the usual indefinite Riemann integral (the preceding conditions are
stronger than those needed for the existence of the integral). Clearly g € D
if the number of discontinuities of g is finite in each finite interval and

either (i) g is zero outside a finite interval or (ii) g is decreasing and

w

J/ g(x)dx < ®. Here is another characterization.
0

Lemma 4.1. (Hinderer (198G)). g € D if and only if $(&é) < © for some & and
g is continuous almost everywhere with respect to Lebesque measure.

The following major results describe the limiting behavior of U z and
U. (Recall that 1/= = 0.)

Key Renewal Theorem 4.2. If F is not arithmetic and ¢ € D, then

w
lim U % ¢g(t) = u—l [ g(x)dx.
0

t—o
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If F is arithmetic with span d and the following sum is finite, then

o

lim U % g(x+nd) u—l 2 g(x+kd).‘

n—° k=1

Blackwell's Renewal Theorem 4.3. If F is not arithmetic, then U(t+h) -
U(t) »h/pas t = o h >0. IfF is arithmetic. then this limit holds with t
a multiple of the span.

These two limit theorems are actually equivalent: The latter follows
from the former with g(t) = 1(t€(0O,u]). and the proof of the reverse
implication is implicit in Feller's (1971) proof of the key renewal theorem.
See Cinlar (1972). Kesten (1974) and their references for generalizations of

the key renewal theorem to Markov renewal processes.

4.3 Applications of the Key Renewal Theorem

The key renewal theorem y;elds limit theorems for expectations of
functionals of renewal and regenerative processes. We shall present a
general approach for identifying new applications and review some standard
examples.

We first note that the standard applications of the key renewal theorem.

as in Feller (1971), are all limit statements of the form lim E¢(t.N,X).

{—w
Here Zt = ¢(t.N.X) is a functional of t, the renewal process N and a random
element X (e.g. a process or mark associated with N). The I'(t) = EZ(
satisfies a renewal equation, and so EZt = U % g(t) for some g. This raises

the questions: What are the possible functionals ¢ lor which EZL satisfies a
renewal equation? Must 7 be regenerative? What about X? The following
observation clears the air in this regard.

Observation 4.4. Suppose 7 = {Z :

" t€R } is a real-valued stochastic process

on the same probability space as the renewal process N.  Assume that
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f(er) = EZt is finite for each t. Then f satisfies the renewal equation
f =g+ F » f with .
(4.3) g(t) = E[Z (T >e)] + f[o't][E(ZtlTl = s) - EZ __JF(ds).
Hence EZ( = U »* g(t), t€R+. Furthermore, when g+ and g are in D and F is

not arithmetic, then

lim EZt = u_lfg g(x)dx.

{—0

An analogous limit holds when F is arithmetic.

Proof. This follows since

f(t) = E[Z 1(T>0)] + f E(Z, | Tj=s)F(ds) - F % f(¢t) + F x f(t)
(0. ¢t]

= g(t) + F» ().
This observation has the surprising implication that the mean of any

real-valued process Zt has the representation EZt =U» g(t). This is of

interest., of course, onl!y when Z depends on N; otherwise., it is vacuous.

Hence, if the limit of EZL appears to exist, then it is a candidate for the
key renewal theorem. The current literature on renewal theory suggests that
one "set up” a renewal equation to obtain the representuation EZ( = U »* g(¢)
or that one derive it directly., for each application. This, however, is not
needed: The preceding observation says that this representation is
automatically satisfied for any application, and that g is given by (+4.3).
Remark 4.5. Two special cases of (4.3) are:

(4.4) g(t) = E[Ztl(Tl>t)]‘ when Z is regenerative,

(4.5H) g(t) = E(/LAF ). when Z has regenerative increments.

The following are examples of the key renewal theorem and the preceding
comments. For simplicity, we assume hereafter that F is not arithmetic.
Example 4.6. Regenerative Processes. Suppose X = {Xti [€R+) is a
regenerative process over TI'T2"" and h: E - R+. Then from Observation -1.4

and (4.4). we have

A

"i~ ﬂ,-’.\" J' , {‘\f
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(4.6) Lim ER(X,) = u™' {5 E[h(X_)1(T >s)]ds.

t—s0

provided the integral exists. It exists when E[le(Tl)] ¢ o, where b(t)

1l

sup E[h(X,) | T, = t]. The important case of (4.6) for h(X ) = (X €A).
st

A € E, reads
i —lmeXG N -1 ['rll
tlm P(X[€A) =p 0 { s A. ‘l s}ds = n E[ 0 (XSGA)ds].

Other special cases are in the next example.
Example 4.7. Backward and Forward Recurrence Times. Two basic functionals
of the renewal process N are

Yt =t - TNt and Yt = TNt+l - t,

the backward and forward recurrence times at t (the time since the last

renewal before t and the time to the next one after t). Another functional

is Lt = WNt =Y

é - Yt' the length of the renewal interval containing t. To
obtain limits of the means or joint distributions of these processes.

consider Z_ = h(Y_.Y..L ) where h: R} - R. Assume that E[T b(T,)] < @, where

b(t) = S?p Ih(s.t-s.t)|. The Zt is regenerative, and so by Example 4.6, we
sqt
have
. . Sl 01
i:: Eh(Y, .Y, .L) = E[[o h(s.T,-s.T,)ds].
Hinderer (1985) discusses this and related results. Here are some special

cases:
PIY, <y} »u” fY[1-F(s) s
(Y; and Lt have this same limiting distribution},
PLY, >y Y. >y} =1 -7 ]g+y'[x—r(s)]ds

P(Y(/L[ ¢ x} = x, 0 <¢x <1,

{the latter also holds with Y; in place of Yt). and

a
v
3
.
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E[YTYEPLT] . E(TT+e+m+1)/[y(k+P+l)[klﬂ]]. ;

provided the last expectation is finite. . 5
Example 4.8. Processes with Regenerative Increments. Suppose X = (Xti t€R+)

is an increasing process with regenerative increments over TI'T Assume

SYREE
that a = EXT exists. By the strong law of large numbers f~r regenerative

1
processes (Corollary 4.12(b)). we know that t—lXt - a/p a.s. How does t—lEX

t

¢

, . . 2 . . .
behave as t -+ ©®? Assume that F has a variance o and that the distribution

G(t)

a 'E(X .. ) has a finite mean a. Then -
tATl

(4.7) lim [EX -at/u] = (@) [ (12+02) /2 - au].

=%

This follows by applying Observation 4.4 and (4.5) to the process
Zt = Xt - at/u. which has regenerative increments, and observing that the

limit above equals
WY [E(stTl) - (a/u)E(sAT )ds = (a/p®) {fg[l—E(sATl)]ds - f;[l—c(s)]ds].

which reduces to the right-hand side of {4.7). An immediate consequence of

(4.7) is lim t—lEXt = a/i1. Special cases of this are the convergence of
{0

moments of N[ in 84.1 and Example 4.13.

4.1 Laws of lLarge Numbers

‘Strong laws of large numbers for renewal, Markov and regenerative
processes appear frequently in operations research studies. Their main use
is for obtaining easy-to-understand performince measures of systems. They
are also useful for establishing objective functions or constraints in
optimization problems. The literature contains a variety of laws of large
numbers for point processes on R+ and for stochastic processes associated

with them. We shall present a general limit law that yields many of these
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ostensively different laws as corollaries. We discuss special uses for
renewal, Markov and regenerative processes. -

0 : : . R 7 . .
Suppose that N = zn:l 6Tn is a point process on R+ and Z = (Z[- t€R+) is

an increasing real-valued process associated with N. Since N[ is the
generalized inverse of Tn (recall NT =n), one would anticipate that the
n

limiting behavior of Nt as t-» would be the inverse of that of Tn as n-e,
Also., the limiting behavior of Zt should mimic that of the embedded process

ZT . The following results formalize these statements. Here we let a and u
n

denote positive constants, one of which may be infinite. Also. in the proofs
we write the limit statements using the symbol ~, where g(x) ~ h(x) as x—=
means g(x)/h(x)—1. We also suppress the a.s. For example, n-lTn - ua.s.

becomes Tn ~ ny.

Theorem 4.9. If n_lTn -y a.s., then t_th - a/p a.s. if and only if

n ZT - aa.s.
n
Proof. If Zt ~ at/u, then clearly ZT ~ aTn/u ~ an. Conversely, if ZT ~
n n
an, then since Z is increasing and TN <t X TN +1° ve have
t

Zt/t < ZT /TN ~ a(Nt+l)/(pNt) ~ a/u,
Nt+l t

and

Z /7t
t

v
N
~N
~3

T N[+l ~ aN[/[u(Nt+l)] ~ alp.

Combining these statements, yields Z( ~ at/p.

Corollary 4.10. t—th - u—l a.s. if and only if n_lT" -t a.s.
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Proof. If Tn ~ hu. then by Theorem 4.9 with Zt = Nt and recognizing
n_lNT = 1, we get Nt ~ t/u. Conversely, if Nc ~ t/u., then clearly Tn =

n
n(Tn/NTn) ~ nu
Remarks 4.11. (a) The preceding results are also true with a and p random or
with a.s. replaced by convergence in probability or in distribution. (b)
Theorem 4.9 is useful for analyzing processes of the form Z = Zi - Z%. where
Zt and Z% are increasing (e.g. when Zt has bounded variation). Just apply
the result to each part separately. (c) Many versions of Little's law L = AW
for queues are consequences of Theorem 4.9. (d) Corollary 4.10 yields a law
of large numbers for any point process N whose interpoint distances satisfy
such a law (i.e. when n'l(w1+...+wn) converges).

We now specialize the results above to renewal and to regenerative

processes.

Corollary 4.12. (a) If N is a renewal process with u = ET

-1
p o a.
1

Zt -2

| { ©, then t—lN[ -

(b) Suppose Z has regenerative increments over Tl'TZ"" and Z =

where Zl and 22 are increasing processes. If a = EZT exists, and a

~ N ©u

and u are not both infinite, then t—IZt - a/u a.s.
Proof. By the strong law of large numbers for sums of independent variables,

we know matannﬁust mﬂrx?T - aa.s. Thus (a) and (b) follow by

Corollary 4.10 and Theorem 4.9, respectively.

Example 4.13. Additive Functionals of Regenerative and Markov Processes.

Suppose X = (XL: tCR+) is a regenerative process over TI'T2"" Consider the

additive functional
. t . L
(4.8) 2, = [O F(X)ds + 3 (X X ).
O¢s (¢t
where f: E - R and g: E2 - R. The f(x) might be the cost per unit time of X
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being in state x. and g(x.y) might be the cost of the process jumping from x
to y (assuming the sum is finite). Then Zt would be the”total cost up to

+ - +, -
time t. We can write Zt = Zt - Z[, where Zt(zt) are the positive and

+ ¢t

negative parts of Zt (Zt is given by (4.8) with f, g replaced by f~, g7).

- + - . .
Assume that a = EZTl = EZTl -~ EZTl exists. We can write

(4.9) a = fg ELf(X)1(T>s)Mds + 3 E[g(X__.X)I(T>s)]
s 0¢st s s
T
- E[/Ol F(X)ds] + E[ 3 g(X__.X)].
ngl

Then from Corollary 4.12(b) and Example 4.8, we have
(4.10) t—th - a/p a.s. and t_IEZt - a/u.
Expression (4.7) also applies.

In particular suppose X is a Markov process with countable state space

E and transition rates
q(x.y) = lim P{X(t+h) = y | X(t) = x}/h, x,y€E.
hl0

Assume that X is irreducible and positive-recurrent with limiting

distribution w(x). Then (4.10) holds with (4.9) reduced to

a =2 f(x)m(x) + 2 w(x) 2 q{x.y)s(x.y).
X X Y#£X

For instance, suppose Z[ = fél(xszx)ds, the amount of time X spends in
state x up to time t. With no loss in generality, we assume that X0 = X.
Then L—IZL - w(x) a.s. and t_lF.ZL - n{x). Furthermore, from (-1.7),

Hn(EZ, - tr(x)] = n(x)[(uZ*0")/(2) - a(x)"'].

{ —g0

where ¢g{(x) = 2 q(x.y). so q(x)—l is the mean sojourn time of X in state x,
y#x

2 . . .
and 4 and ¢~ are the mean and variance of the time between two entrances into

state x.
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5. STATIONARY POINT PROCESSES

In this section we discuss a few basic properties of stationary point
processes on R. These concern their infinitesimal behavior and Palm
distributions (a conditional distribution of a process given it has a point
at a certain location). Our coverage does not include ergodic theorems,
spectral analysis, and prediction and filtering. As for applications,
stationary point processes with marks have been especially useful in
characterizing non-Markovian stationary queueing processes (Franken et. al

(1981) and Baccelli and Bremaud (1987)).

5.1. Definitions and Examples

A stochastic process X = {X : t€R} with a general state space E is

[[T=9a)

stationary if (Xt +h'CC X

(X, .....Xt }. for each h,t
1

..tn in R.
1 n

t +h) 1’
That is. the distribution of X is invariant under translations of the time
axis. A simple way of expressing this is that OhX g X for each h € R, where
OhX is the process X with the time axis translated by h, i.e.

8, X(t)

X(t+h), t € R. Stationarity of point processes is similar. A point
process N on R is stationarx if

(N(B, + h).....N(B_+ hy) ¢ (N(B)).....N(B )) for each B,.....B in & h € R.

n

In other words. the increments of N are stationary or invariant in

distribution under time translations. Simply stated. OhN g N for each

h € R. where BhN(B) = N(B + h)., which is the process N with the time axis

. : . d
translated by h. This notion readily extends to point processes on R*. R
or on other yroups or semigroups. We shall restrict our discussion to

processes on R. Recall the convention that the point locations of N are

labeled such that
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< T__l < TO <0 ¢ Tl < T2 <
We have already discussed some stationary point processes: Poisson and
compound Poisson processes with constant rates, and Cox processes with
stationary intensity processes. Here are some more examples.
Example 5.1. Stationary Renewal Processes. lLet F be a distribution with

F(O) = O and finite mean p. Suppose N is a point process on R with

independent inter-point distances such that each Wn. n #£ 1, has the

distribution F and Wl Tl - To is such that -TO and T1 have the joint

distribution
P(-Tg >u. T, >v}h=1- ul ]”*" [1-F(t)]de.
In particular,
-1 ,t
P{-Ty < t} = PAT, <t} = m [0[1 - F(s)]ds.

Then it follows that N is stationary. This N is called a stationary renewal

process.
Example 5.2. Functions of Stationary Processes. Many stationary point
processes arise as functions of stationary processes as follows. Suppose X

is a stationary process with state space E and N is a point process defined

by N(A) = ¢(X.A) where ¢: 4 x § - {0,1,...} and ¥ is the set of sample paths

of X. Assume ¢ is such that -

(5.1) o(X.t + A) = Q(GtX.A) for each t ,A.

Then N is stationary. This follows since

d

G[N(-) = ¢(X, t + ) = ¢(BCX. *) ¢(X.*) = N(-).

6 LEAAAAAI 35

This result also holds if X is a stationary point process or a vector valued

’I
&
process. For instance, suppose X is a stationary pure-jump Markov process as v
<
in Example 4.13 or § 6.3. Consider the point process N of times that X jumps :
from some x € S to some x' € S' where SNS' = ¢. Then !
[
.
\
T
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N(A) = ¢(X.A) = 2 l(Xt_E S. XLES').
t€A

. Clearly ¢ satisfies (5.1) and so N is stationary.
Another notion of stationarity is as follows. A point process N on R

has stationary intervals (or inter-point distances) if the sequence ....W

_l'
. . . f
WO, Wl.... is stationary: (Wn ht nk+h) = (W C Wl ) for any
Npeeenp. h. If N is stationary, then intuition suggests that it has
stationary intervals. This is true in only degenerate cases. Indeed. since

the Tn's are labeled such that T ¢ TO <0< Tl' then the distribution of W

l L

will usually be different from Wn. n#Zl: The Wl is an interval covering a
certain location O while the other Wn's have no such restriction. This is
called the waiting time paradox. For instance. if N is a Poisson process
_ with rate A, the Wl is the sum of two independent exponential random
variables —TO and Tl both with mean A—l. while any other Wn is simply

exponential with mean A_l. The Palm probabilities in 8 5.3 shed light on

this paradox.

5.2. Infinitesiml Properties
For the following discussion, we assume that N is a stationary point
process on R. It need not be . imple. An application of Fubini's theorem

(Chung (1972)) shows that P{N({t}) = O} = I, for each t. Moreover, either

EN(I) < = for each finite interval I, or EN(I) = » for each non-degenerate

interval I. In either case,

EN = (EN,, t > O,
t 1

-
»?

N
N
L
-
.:.
v,
4
-
d
*y
v
..

where ENl ¢ w. This follows since, by the stationarity of N,

EN. = FEN +E(N_. - N)=EN_ +IN. S.U 2 0.
S S+t S

S+t S 4
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0
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When N is a Poisson process with rate A, then we know that

(5.2) P{N, 2 1} = At + o(t) as t 1 0, -
(5.3) N = EN,,
(5.4) P{N_ 2 2} = o(t) as t | 0.

Does each stationary process have an “intensity” A as in (5.2)? If so. does

A always equal ENI? A process satisfying property (5.4) is called orderly.

Lemma 1.7 ensures that if N is orderly, then it is simple and so one can
order its point locations (they are "orderly”). When is N orderly? The

following result addresses these issues.

Theorem 5.3. (a) (Khintchine) The limit A = lim P(Nt > 1)/t exists and
t=0

0 <N ¢ m,
N (b) (Korolyuk) If N is simple., then A = ENL { @,
(c) (Dobrushin) If N is simplé and EN1 ¢ o, then N is orderly.

Proof (a) Clearly f(t) = P(N[ > 1) decreases to O as t | O and. for each

s.t >0,

- e

> 1} € f(s) + f(1).

s+t 7

f(s + t) = P(NS 2 1)+ P(NS =0, N
Thus., A exists by the following property of sub-additive functions: If f:
[0.b] = R is sub-additive (f(s+t) < f(s) + [(t), s.t > 0) and f(t) = O as
t - 0, then

lim f(t)/t = sup f(t)/t < =,
tlo t
(b) First note that since N is simple (its points are isolated), we can write

n

Nl = lim Sn a.s., where § = 2
n-so n k=0

I{(N((k-1})/n, k/n] > 1) and n runs through

. - m .
integers of the form 2. Then by l.ehesque’'s monotone convergence theorem and

part {(a)., we have

EN[ = lim ES“ = lim nf(1/n}) = \.

| %0
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{(c) Using the stationarity of N, we can write

EN1 = nEN(O,1/n] -
o

= nf(1/n) + nP{N(O.1/n] 2 2] + n 2 P{N(O.1/n] > k}.
k=3

letting n=°, we know by (a) and (b) that nf(i/n) - ENI‘ and so the last two
terms in the preceding display must tend to O.

) What can we say about the distribution of the number of points at a
single location (or in a batch) when N is not simple? In case N is a
compound Poisson process with rate A and mass or batch-size distribution F,

then

W W

P{ 1 ¢ Nt <m} = ANF(m)t + o(t) as t | 0, and

F(m) = lim P{N

<m | N2 L)
tlo

t

T v R

These properties extend to the general stationary point process N as follows.

Theorem 5.4. For each m, the limit Am = lim P{1 ¢ Nt { m}/t exists and Am 1
cdo

some A { ®. When A < ®, then

TR

(5.5) F(m) = A /X =1im P{N_ <m | N 21}
m th t L

and ENl is the mean of F.

! Proof. The first assertion follows like Theorem 5.1 (a) since g(t) = P{1 ¢

N( { m} is sub-additive. The existence of the limit (5.5) follows by

applying the first part and Theorem 5.1(a) to the conditional probability
P{l ¢ Nt < m)/P{Nt 2 1}y, That ENl is the mean of F follows by an argument
similar to that for Theorem 5.1 (b), which we omit.

Pt

Extensions H5.5. All of the preceding results hold under the weaker

assumption that N is crudely stationary: N(I+t) g N(I) for each t and

interval I (see Chung (1972)). Korolyuk's result extends to non-stationary

point processes that may also be on a general space. For this and other
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insights into these infinitesimal properties, see Leadbetter (1972), Daley

and Vere-Jones (1988) and their references. ‘

5.3 Palm Probabilities

A Palm probability distribution of a point process is essentially a
conditional probability distribution of the process given that it has a point
at a certain location. Such probabilities shed light on inter-point
distances. For instance, a stationary point process on R will have
stationary intervals with respect to its Palm probability even though it
doesn’t have stationary intervals with respect to the underlying probability
measure.

We begin by defining Palm probabilities for non-stationary processes.
Suppose N is a point process on E = R whose mean measure u(A) = EN(A) is
finite for bounded A. Let ¥ denote the set of all counting measures on E.

The Campbell measure of N is a measure C on E x ¥ defined by

C(A x M) = E[N(A)I(N € M)]. for A.M Borel sets in E, ¥.
This measure admits the disintegration
(5.6) C(A x M) = f, P (Mu(dt),
where each Pt is a probability measure on ¥ (see 810 of Kallenberg(1983)).

The Pt t € R, are called the Palm probability distributions of N. This

definition i1s essentially that of Ryll-Nardzewski (1961) who gave a
theoretical basis for earlier versions of this notion. Note that expression
(5.6) is equivalent to
(5.7) PL(M) = C(dt x M)/iu(de) = E[N(dt)I(N € M)]/EN(dtr).

We now restrict our attention to the case in which N is stationary and

simple with X = ENl ¢ w. Then from the right-hand side of (5.6). it follows

SRR YARARAARE
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that P[(M) = PO(G-LM)‘ where O_tM = (G_tu: u € M} and B_Lu(A) = p(A-t).

A € & That is, the Pt's are translations of PO. Accordingly, the single PO

is called the Palm probability distribution of the stationary process N. In

this case, the preceding definition of PO is expressed as

(!

(5.8) Po(M) E[f, (8N € M)N(d1)].

where |A| is the area of A € £§. The right-hand side is the same for each
A€ g, and so A = (0.1] is a typical choice. Another expression for the last

expectation is I P{OT N € M, Tn € A}.
n n

- - o .
Following a common convention, we let N* = 3 6To denote another point
n n

process on R, on some probability space, such that P(N0 € M} = PO(M) for each
M. This probability measure upon which N® is based is not the same as the P
we have been using for N. The distinction between these probabilities should
be apparent from the events théy measure. The N° is interpreted as "N
conditioned that it has a point at 0" (the Palm version of N). This
interpretation is justified by the property

P{N°(a.b] = m} = lim P{N{(a.b] =m | N(-h, 0] 2 1}.
hilo

Furthermore, note that Po(p: {0} =1} =1 or NO{O} = |l a.s. This follows

since using (5.8) with A = (0.1] and GT N{O} = N(Tn} =1 a.s.., we have
n

P(N°(0} = 1} = A" 3 P( 6 N{O)
n

n

I
—
-3
A\
—
—

. .0 . . )
Another feature of N” is that it has stationary intervals (even though N does
not have stationary intervals). This statement is equivalent to

PO(GT M) = PO(M)' for each M, which one can prove using (5.8).
1

The following formulas relating P and P, are useful for proving results

0

about NO or N.
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Campbell Formula. For ¢: R x ¥ - R+.
(5.9) MELo(1.80)] = E[f, o(1.0,N)N(dt)], -
provided these expectations exist. This follows from (5.5) when ¢ is a
simple function and., for a general ¢ (which is a limit of simple functions),
it follows by monotone convergence. A special case, for f: N = R+. is

N ELE(NC)] = E[f) F(O N)de].
Keep in mind that the expectation on the left is with respect to the
probability for N® while the expectation on the right is with respect to the

probability for N, which is different.

Expressing P in Terms of P,. For f: ¥ - R+.

)
79 -9
ELE(N)T = A ELf ot (T N0)ae] = A BLf, © £(T_ N°) acl.

In particular,

0
T 0
P{N € M} = A E[}O (TN € M)de].

A special case is the Palm-Khinchine formula
P(N(G.t] = m} = A [5 P(N(0.5] = m} ds.
Also, letting F(t) = P(T? ¢ t}, we have (cf. Example 5.1)

(O vi=1 - ]g*v [1 - F(t)]dt

(5.10) P{- TO >u, T
P(-Ty <t} = P{T; ¢ ¢} = A ]5 [1 - F(s)]ds.

Our next result is a convenient formula for the Palm probability of a
superposition of processes. Suppose Nl ..... Nn are independent, simple
stationary point processes on R with finite intensities Al.....An. Consider
their superposition N = Nl+...+Nn. Clearly N is stationary since it is of
the form N(A) = ¢(X.A) where X = (Nl ..... Nn) is stationary (recall Example
.

5.2), and N is simple with rate A = Al+...+An since NJ(t) = 0 a.s. for each

j.t and the Nl ..... Nn are independent.
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Theorem 5.6. For Mew,
n o .
(5.11) P(N°eM} = 5 (A./N) P{NO + 3 N €M),
o J J .k
j=1 k#j

where the N?, Nk' k#j are independent.

Interpretation. This says that N® is distributed as N? + 2 Nk with
k#j

probability Aj/). j=1..... m(i.e. N® is a "mixture” of these processes). The
N?. Nk k#j on the right of (5.11) are defined on some probability space and
their distributions are the same as the original processes with the same

labels.

Proof. Two applications of the definition (5.8) and the stationarity of

Nl ..... N vyield
P(N°M) = A ' E[f 1(8 NEM)N(dt)]
t
(0.1]
-1 n
= A s E{E[ | (N + I ON ¢ M)Nj(dt) INk. k#j]}
=l (0.1] b kg '
-1 2 o
= A 3 N, E[I(N, + = OtNk € M).
j=1 I ke
-1 ° o
= A S A, PN, + X Nk € M}/
j=t Y ke
Example 5.7. Suppose Nl""'Nn are independent renewal processes with
waiting time distributions Fl ..... Fn that have means AIl ..... A;l. Their

superposition N = Nl+...+Nn is stationary., but it will generally not be a

stationary renewal process. Theorem 5.6 and (5.10}), however. tell us that

the TO and Tl for N are such that

n
P(-Ty > u. Ty > v) = 3

(AJ/A) ?j(u)ﬁj(v) kzj ék(u+v)
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6. POINT PROCESSES QIARACTERIZED BY MARTINCALES

We now discuss point processes on R+ whose evolutioh is characterized by
an increasing history of observed events or information. Here are some

motivating examples. Suppose N = (Nti tCR*) is a Poisson process on R+ with

t

mean measure At = f Asds (following the convention of this area, we now use
0

A instead of A). One can interpret N as evolving over time and its evolution

or dynamics are given by

(6.1) E[dN, IF(_] = P{dN =1 | F._} = Ade + o(de).

where dNt = Nt - N[_. F[ = o(NS. s ¢ t), the o-field of the history of N up

W B AR T ey S W e T TS ———— T T T

to time t, and Ft— is the history on [O.t). A more concise way of expressing

(6.1) is to say that the process Mt = N[ - A[. t€R,. is an Ft - martingale.

™

That is, E[Mt I FS] = Ms. s ¢ t, which is equivalent to

t
(6.2) E(N, - N - g N du lFS] = Q.
t
As another example, suppose that N is a Cox process directed by At = /0 Asds

K

where A is a non-negative stochastic process. Then the evolution of N is

also characterized by (6.1), (6.2), where ht is random and Ft = a(NS, s <t

Au‘ u 2 0), the o-field of N up to t and the entire trajectory of A as well.

T

For the final example, suppose that (Xt: t € R*) is a birth and death
queueing process with state space {0.!.,...} and state-dependent arrival and
service rates a(n), B(n). That is, when X[ = n, the time to the next
potential arrival is exponential with mean a(n)—l and the time to the next
potential service completion is exponential with mean ﬁ(n)-l. Consider the
point process NL of the number of customer arrivals up to time t. Again, the

evolution of N is characterized by (G.1). (G.2) with At = u(X(_) and

Ft = U(XS; s ¢ t). the history of X up to t. which also includes that of N up

T
.
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to t. This is sometimes referred to as a state-dependent Poisson process
with random intensity At (be careful with this loose terminology since N is
generally not a Poisson or even a Cox process).

Such examples motivated the development of a general theory of point
processes with dynamics as above. The link between these point processes and
their associated martingales has led to a martingale calculus of point
processes, which is part of the modern stochastic calculus that deals with
integration with respect to Weiner processes, martingales or
semi-martingales. Point processes on R+ are special submartingales or
semi-martingales.

Much of the current mathematical research on point processes deals with
this class of processes Little is known about these processes on R2 or
other partially ordered spaces: see for instance Merzbach and Nualart (1986).
There are a number of results in this area. such as in filtering and optimal
dynamic control, that have potential applications in operations research.
Basic references are Bremaud (1981), Liptser and Shiryayev (1978). Ikeda and
Watanabe (1981). and Karr (198G). Unfortunately. we cannot get into these
lengthy topics. We will be content with introducing the basic notion of a
compensator and showing how it is used in Poisson limit theorems and

approximations.

6.1 Compensators of Point Processes
As one would expect, the stochastic process A! appearing in the
martingale M[ = N[ - At in the examples above plays an important role in

characterizing N. Such processes, called F[—compensu(ors of N, are the

subject of this subsection.
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Let (. F, P) be a probability space. This will be the underlying space

for all of our processes. Let (F[Z t€R+} be a filtration or history on ::
b
b
(2. F): a family of sub-o-fields of F that are increasing (F_C F . s<{t). o~
S t ‘:‘w.
Y

-

5

The F[ represents the information one observes up to time t. We assume, as

]

usual, that FO contains all P-null events and that F[ is right-continuous Ry

D)

.

(F[ = N Fu). Suppose X = {X(Z t€R } is a real-valued stochastic process on 3
u>t

L)
RO

(2. F. P). The internal history of X is Ff = o(XS: s¢t), the o-field of the
events of X up to time t. The X is Et—adagted. if FT C Ft for cach t. The X
is E[—Qredictable if it is F[—adapted and each set {(t.w) € R, x

Xt(w) ¢ x} is in the smllest o-field on R x 1 that contains the sets

(s.t] xB, s <{t,. B¢ Fs' For our purposes, one can define X as being
F[—predictable if it is Ft-adapted and has left-continuous paths (such
processes form a large class of predictable processes). The process X is
increasing if X(0) = O and its sample paths are nondecreasing and
right-continuous.

Consider a point process N = (N(; [€R+) defined on (2, F, P) that is
Ft—udapled and has point locations Tl < T2 {... with Tn - ® a.s. For
convenience, we assume that each N[ has a finite mean (this allows us to use
martingales instead of more general local martingales). Then there is an

increasing F(—predictable process A = (A(, eCR*} such that, for each

Ft—predictable process C = <Ct: L€ R+}.
@ o)
(6.3) E[I (‘(le] . }-‘{5 ¢ dA ]
Lo 0 ¢

PR
P
& '

.,'

The A is unique up to P-null events. This process A is the Et—comggnsu(ur

‘ »
. , . . . . . RN
(or dual predictable projection) of N We sometimes call N an ﬁ(‘W’”“ ;n:
L g™ )
HE

process with compensator A. The condition (6G.3) holds if and only if the

process Ml = Nt - A[. tC R, is a mutinzate. The M 15 the process N
N
‘tl' N
X
) v - oo
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compensated by A. The representation Nt = Mt + At is the Doob-Meyer

decomposition of N (viewed as a submartingale). Keep irr mind that A depends

on the choice of F[; the smallest possible Ft is N's internal history FT.

t
The A often has the form At = f Asds. where A {At; t € R+} is a
0

non-negative Ft—predictable process called the ;t stochastic intensity of N.

This intensity has the interpretation (6.1) and. in many cases,

A, = lim E[N

- NtlFt]/h.
h-0

t+h

The process N is an E[—PoissonAQrocess if, for each s ¢ t, Nl - Ns is a

Poisson random variable independent of Fs' The N has ft—indepondenl

increments if for each s < . N( - Ns is independent of FS.

The following are some basic properties of compensators:
(i) N is an F[—Poisson process if and only if A is deterministic and
continuous. In this case F[N =N |[F ] =A - A . s < L.
t s's t s
(ii) N has F[‘independen( increments if and only if A is deterministic.
(iii) N has F[—condi(iomllly independent increments given ‘6, a sub-o-lield
of FO. if and only if A is a ‘6-measurable function.

(iv) If A is a.s. continuous, then N is stochastically continous

(P{AN_ = 1) = 0. t €R,).

{(v) If X is an F[—predictuble process with | |X IdA( (®a.s,
[0.t] °
then the process Z = f XdM , ¢ € R* is an F[—murlinqulc.

[0.t1°

We have aready seen three examples of compensators of point processes in
the introduction. llere are two more.

Example 6.1. Renewal Processes and Some Relatives. Suppose N is as above

) . N , . . .
with Pl =4V F[ where 4 is some o-field (. .y. lor rhe Cox process above.

4 = n(ASZ s € R*)). Let Fn(x) ’ T x | FT }.  Then the
n

F(—compcnsnlor of N is
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2
=T
" -1
A=A+ / (1 - F (x=)] F (dx). r< et
n O :
This resembles a hazard rate in reliability since dA, = an(l)/[l - Fn(t—)].
n

In particular, if N is a renewnl process with waiting time distribution F and
F[ = FT. then the compensator is as above with the random Fn replaced by ¥.
Example 6.2. Jump Times of Markov Processes. Suppose X = (X[; t C R+) is a

Markov process with countable state space X and transition rates q(x.y) (as

! in Example 4.13). We assume that 0 < 2 g(x.y) € @ and that X cannot take
y#X

an infinite number of jumps in a finite time interval. A variety of point
processes associated with jumps of X can be modeled as follows. Consider the
point process N of times at which X jumps from some state x to another state

y where (x.y) are in the set J C X x X and J does not contain pairs (x.x).

That is,

N[ = 3 l((XS*. Xs) € . t€R+
st

Then an easy check shows that the Ff-compensutor of N is

t
A, = / b3 q(x.y) 1(X _ = x)ds t€R
0 (x.y)<J
The Xs— miy be replaced by XS since X is stochastically continuous. These

point processes are useful for modeling flows of customers in quecueing

networks s we discuss later.

Compensators for marked point processes are defined similarly. Suppose
N = X hf / is a marked point process on R+ x F such that the point
n=| n''n

process N( = N l(Tn < t) is as above. Then the compensator of N is the
n

unigue random measure A on R* x F such that Al(B) = A([0.t] x B). l(R*. is
Fl—predictublc for each B € E and. [or each predictable process € = {C{t.x):

(t.x) ¢ R, x L},
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E{ [ C(t.x) N(dtdx)] = I{[ f C{r.x) A(dudx) . '
R xE R xE
+ + . 0
K
6.2 Poisson Convergence and Approximations. 4
Many properties of a point process on R+ can be expressed in terms of
RS
its compensator. For instance. one might expect that a sequence of point o
processes would converge in distribution if their compensators converge .
.l
appropriately. One such Poisson limit theorem is as follows. This and other
limit theorems for processes with independent increments or conditivnally
independent increments appear in Kabanov et. al. (1983). and Kabanov and
Liptser (1983) (they also discuss mirked point processes). _
Y
Theorem 6.3. Let N" be an I-‘T—poin( process on R* with compensator A" -
n=1.2..... and let N be an Fl-l’oisson process with (deterministic continuous) ::i
oond, . d N
compensator A. [f A? - At for each t, then N SN, .
The following total variation bounds are useful for amlyzing rates of
convergence in the preceding setting or for establishing Poisson
P’
7’
approximations. Suppose N'is a point process with F;—inlensity ,\; and N is a =
Poisson process with Ft-inlcnsity )\l. Let P; and Pt denote the probability <
distributions of the respective processes N' and N on the interval [0.t]
(e.x. l’[(B) = P{N € B} where B is a Bore! subset of sample paths ol N on ‘.
[0.t]). The total variation distance between P; and P( (recall &3.1) is o~
-
defined by d(P . P ) = sup | Pi(B) - P (B) [ ,
R
f
Towal Variation Bounds 6.4.
t .’~
. . b) N L. _.‘
(i) d(P[. 't) <CE S | )\S )\s lds. )
0 -
(i) If N = FEA', then -
S S o,
¢ 1/ ;
d(P'. P ) ¢ [ Var X777 ds. ~
t t 0 s .
~
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7
(iii) Using the notation of 83.4,
w0
. _ . AN o - - . -
N =2 | P{N' = n) - P(N = n}| <d(P,. P ).
n=0
Inequality (i) is proved in Brown (1983) and kKabanov et. al (1983). .
Inequality (ii) follows from (i) since E ]A; - EA;I < var A;l/z. And (iii)

follows from the definitions.

s

Example 6.5. Poisson Approximations of Jump Times of Markov Processes.
Suppose. as in Example 6.2, that X is a Markov process and N' is the point
process of jumps of X from x to y where (x.y) € J. We observed that N’ has

Ff—inlensi(y Al = b} g(x.y) I{X(t) = x). Assume that X is stationary
(x.y)eJ

with distribution m(x) = P{X{(t) = x}. Let N be a Poisson process with

intensity A( = EA’ = 2 q(x.y)m(x). Then from Bound G.4 (i). we have
(x.y)<J .
d(P . P) <t -3 q(x.y)E[L(X(t) = x) - w(x)]
(x.y)eJ
=2t 3 q(xu)r()[1 - m(x)]. .
(x.y)eJ

When the last sum is small, then N' is close to being Poisson. A specilic
illustration follows.
6.3 Customer Flows in a Jackson Queueing Network That are Approximately
Poisson

We now assume that the Markov process above is an open Jackson queueing
network process defined as tollows. Consider a network of | nodes
representing service stations. CQustomers enter the nodes 1, . ..] from
outside the network according to independent Poisson processes with
respective raites v .. Fach node j operates as an jsolated single
server whose service times are independent exponential random variables with

mean ‘j . Customers are served one at a time, under any priority scheme. A

customer . after being served at node j. goes immedintely to node kK with
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probability p.,. k=l,....j. or exits the network with probability p. . (3
ik 10 ke
pjk = 1). Let X(t) = (Xl(l) ..... X ,{t)) denote the numbers of customers at

the respective nodes at time t. Then X is a Markov process with state space

1 = {x = (xl.‘...x])I Xj = 0.1....} and transition rates
D, for =¥ + e,
J y J
X, = .P. =x —e. + e , x. > 1
q(x.y) ¢Jka y ; K j 2
P. =X - e,
¢JpJ0 y J

and g(x.y) = O elsewhere. where ej is the vector with | in position j and O's
elsewhere.
Consider the routing probabilities (pjk) j.k=0.....J as a Markov matrix,

where Pok = nk/E (FE Assume that this matrix is irreducible. Then there is
4

a unique solution apoeon aJ to the so-called traffic equations
a, =v,_+ ¥ np j=1 ]
j oD Kk

e _ < B . . . iy
Name ly . ay = qO/“P Dy uj = qj (j > 1) where Qe qJ is the probability

J
distribution satisfying q., = ¥ q,p, .. j=0.....J. This assumption ensures

k=0 K KJ

that there is a positive probability that each customer muy reach any node.

A

We also assume that the traffic intensity “j = uj/¢j < I tor each j. Thus :
. . . ‘J H

the network process X has the stationry distribution wo(x) = 1T (! - 33
X . N
pj)pj ) Finally, assume that X is stationary. -ﬂ
. . LY

Now. consider the point process

i

o a

Nij(t) SOY H{X{s-) = x, X(s) = x ~e, + o). tCR
’ X

.
st ! 1

ot

of the number of times customers move trom node 1 to node j in the time

A

-
N
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interval [0,t]. Similarly, let Nio(x) denote the number of times customers
exit the network from node i up to time t. Also conside€r the process

Nj(t) = 3 I I(X{s-) = x. X(s) = x + e‘j or x - e, *+ ej for some i), t€R,

: st x .
| of the number of customer arrivals into node j up to time t. From bkxample
’ 6.2, we know that these processes have the respective Ff—intensi(ies
b
|
= ) 2 H = h)
: Aij(t) I(Xi(t) 2 l)¢ipij' and Aj(l) “j + l(Xi(() 2 l)¢ip1J

i

Since X is stationary. it follows that Nij and Nj are stationary with rates

EAy(0) =pi8py 5 = appy
EA(ty =v, +Xpeé.p . =a..
J( ) i ipl iPi j
It is well known that Nlo...A.NJO are independent Poisson processes (in

the usual sense when only their internal histories are observed and X is not)

with the respective rates ulplO""'qujO- This follows using filtering or o
reversibility argument: see for instance Bremaud {(1981). Similarly, one cun
show that if I. ] are two disjoint subsets of nodes such that from any node
in J a customer cannot reach a node in [, then (Nij}. i€, j¢<J. are
independent Poisson processes with respective rates (nipij}'
. X . . .
We now consider Nij as an Ft-p01nt processes {(i.e. X as well as Nij is

. . . . . . t
observed). Our interest is in how close Nij is 1o being Poisson. let d.

1]
denote the total-variation distance between the distribution of Nij and that

of a Poisson process with rate a;p;, on [0.1t]. Then by the Bound L. (i), we

hiwve

-."._."../. L.
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| d' </ EJA.(s) -EN, (s)] ds

ij= 7y ij b,

o - by,
Y

= 1(X. -

i L opy; E[1(X, () > 1) - p| 3
= 1 - = - . ‘

2t¢ipijpi( py) Ztaipij(l Pi) h

.

Thus Nij will be approximtely Poisson when the traffic into i is light ~
¢

(pi 2 0). the traffic into i is heavy (pi = 1), or the traffic between i and {
j is light (a.p.. = 0). o
171} 7
\
Similarly. let d; denote the total-variation distance between the w3

¥

distribution of Nj and that of a Poisson process with rate a; on [O0.1]. !
Then, as above. d; < 23 ¢ipijpi(l - pi). Consequently, Nj will be ;
. i . .. ‘.

approximately Poisson under the conditions above or when the network is large .
and the dispersion of customers via the pij's is relatively even {the pi.'s -
A, 9

-

are approximately equal and small). Brown and Pollett (1982) discuss this :
LY

approximation and related ones for closed networks (they sometime use the :‘
¢{]

looser Bound 6.4(ii) instead of (i) for convenience). \
%
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